26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Spectroscopic and kinetic studies of PKU-inducing mutants of phenylalanine hydroxylase: Arg158Gln and Glu280Lys.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin-dependent, nonheme iron enzyme that catalyzes the hydroxylation of L-Phe to L-Tyr in the rate-limiting step of phenylalanine catabolism. This reaction is tightly coupled in the wild-type enzyme to oxidation of the tetrahydropterin cofactor. Dysfunction of PAH activity in humans leads to the disease phenylketonuria (PKU). We have investigated two PKU-inducing mutants, Arg158Gln and Glu280Lys, using kinetic methods, magnetic circular dichrosim (MCD) spectroscopy, and X-ray absorption spectroscopy (XAS). Analysis of the products produced by the mutant enzymes shows that although both oxidize pterin at more than twice the rate of wild-type enzyme, these reactions are only approximately 20% coupled to production of L-Tyr. Previous MCD and XAS studies had demonstrated that the resting Fe(II) site is six-coordinate in the wild-type enzyme and converts to a five-coordinate site when both L-Phe and reduced pterin are present in the active site. Although the Arg158Gln mutant forms the five-coordinate site when both cosubstrates are bound, the Fe(II) site of the Glu280Lys mutant remains six-coordinate. These results provide insight into the PAH reaction and disease mechanism at a molecular level, indicating that the first step of the mechanism is formation of a peroxy-pterin species, which subsequently reacts with the Fe(II) site if the pterin is properly oriented for formation of an Fe-OO-pterin bridge and an open coordination position is available on the Fe(II).

          Related collections

          Author and article information

          Journal
          J. Am. Chem. Soc.
          Journal of the American Chemical Society
          American Chemical Society (ACS)
          0002-7863
          0002-7863
          May 14 2003
          : 125
          : 19
          Affiliations
          [1 ] Department of Chemistry, Stanford University, Stanford, California 94305, USA.
          Article
          10.1021/ja029106f
          12733906
          30d5bcc5-7cfd-4524-a556-07112e73b34a
          History

          Comments

          Comment on this article