15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stormwater runoff driven phosphorus transport in an urban residential catchment: Implications for protecting water quality in urban watersheds

      research-article
      ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased stormwater runoff in urban watersheds is a leading cause of nonpoint phosphorus (P) pollution. We investigated the concentrations, forms, and temporal trends of P in stormwater runoff from a residential catchment (31 low-density residential homes; 0.11 km 2 drainage area) in Florida. Unfiltered runoff samples were collected at 5 min intervals over 29 storm events with an autosampler installed at the stormwater outflow pipe. Mean concentrations of orthophosphate (PO 4–P) were 0.18 ± 0.065 mg/L and total P (TP) were  0.28 ± 0.062 mg/L in all runoff samples. The PO 4–P was the dominant form in >90% of storm events and other–P (combination of organic P and particulate P) was dominant after a longer antecedent dry period. We hypothesize that in the stormwater runoff, PO 4–P likely originated from soluble and desorbed pool of eroded soil and other–P likely originated from decomposing plant materials i.e. leaves and grass clippings and eroded soil. We found that the runoff was co-limited with nitrogen (N) and P in 34% of storm events and only N limited in 66% of storm events, implicating that management strategies focusing on curtailing both P and N transport would be more effective than focussing on only N or P in protecting water quality in residential catchments.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.

          The cycles of the key nutrient elements nitrogen (N) and phosphorus (P) have been massively altered by anthropogenic activities. Thus, it is essential to understand how photosynthetic production across diverse ecosystems is, or is not, limited by N and P. Via a large-scale meta-analysis of experimental enrichments, we show that P limitation is equally strong across these major habitats and that N and P limitation are equivalent within both terrestrial and freshwater systems. Furthermore, simultaneous N and P enrichment produces strongly positive synergistic responses in all three environments. Thus, contrary to some prevailing paradigms, freshwater, marine and terrestrial ecosystems are surprisingly similar in terms of N and P limitation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition.

            Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the atmosphere. Here we show that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus (P) in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted. Under low N deposition, phytoplankton growth is generally N-limited; however, in high-N deposition lakes, phytoplankton growth is consistently P-limited. Continued anthropogenic amplification of the global N cycle will further alter ecological processes, such as biogeochemical cycling, trophic dynamics, and biological diversity, in the world's lakes, even in lakes far from direct human disturbance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Urban ecological systems: scientific foundations and a decade of progress.

              Urban ecological studies, including focus on cities, suburbs, and exurbs, while having deep roots in the early to mid 20th century, have burgeoned in the last several decades. We use the state factor approach to highlight the role of important aspects of climate, substrate, organisms, relief, and time in differentiating urban from non-urban areas, and for determining heterogeneity within spatially extensive metropolitan areas. In addition to reviewing key findings relevant to each state factor, we note the emergence of tentative "urban syndromes" concerning soils, streams, wildlife and plants, and homogenization of certain ecosystem functions, such as soil organic carbon dynamics. We note the utility of the ecosystem approach, the human ecosystem framework, and watersheds as integrative tools to tie information about multiple state factors together. The organismal component of urban complexes includes the social organization of the human population, and we review key modes by which human populations within urban areas are differentiated, and how such differentiation affects environmentally relevant actions. Emerging syntheses in land change science and ecological urban design are also summarized. The multifaceted frameworks and the growing urban knowledge base do however identify some pressing research needs. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                gstoor@umd.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                3 August 2018
                3 August 2018
                2018
                : 8
                : 11681
                Affiliations
                ISNI 0000 0001 0941 7177, GRID grid.164295.d, Department of Environmental Science and Technology, , University of Maryland, ; College Park, MD 20742 USA
                Author information
                http://orcid.org/0000-0003-2243-3686
                Article
                29857
                10.1038/s41598-018-29857-x
                6076301
                30076338
                30dc85f6-c7b2-432d-aa78-edefca82c640
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 November 2017
                : 20 July 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article