8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Corticosterone Impairs Insulin-Stimulated Translocation of GLUT4 in the Rat Hippocampus

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Exposure to stress levels of glucocorticoids produces physiological responses that are characteristic of type 2 diabetes, such as peripheral insulin resistance and impairment in insulin-stimulated trafficking of glucose transporter 4 (GLUT4) in muscle and fat. In the central nervous system, stress produces neuroanatomical and neurochemical changes in the hippocampus that are associated with cognitive impairments. Methods: In view of these observations, the current studies examined the effects of short-term (1 week) exposure of stress levels of glucocorticoids upon insulin receptor (IR) expression and signaling, including GLUT4 translocation, in the rat hippocampus. Results: One week of corticosterone (CORT) treatment produced insulin resistance in response to peripheral glucose challenge. In the hippocampus, IR expression was unchanged in CORT-treated rats as compared with vehicle-treated rats. However, insulin-stimulated phosphorylation of the IR, total Akt levels and total GLUT4 levels were reduced in CORT-treated rats when compared to controls. In addition, insulin-stimulated translocation of hippocampal GLUT4 to the plasma membrane was completely abolished in CORT-treated rats. Conclusions: These results demonstrate that in addition to eliciting peripheral insulin resistance, short-term CORT administration impairs insulin signaling in the rat hippocampus, effects that may contribute to the deleterious consequences of hypercortisolemic/hyperglycemic states observed in type 2 diabetes.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Cortisol levels during human aging predict hippocampal atrophy and memory deficits.

          Elevated glucocorticoid levels produce hippocampal dysfunction and correlate with individual deficits in spatial learning in aged rats. Previously we related persistent cortisol increases to memory impairments in elderly humans studied over five years. Here we demonstrate that aged humans with significant prolonged cortisol elevations showed reduced hippocampal volume and deficits in hippocampus-dependent memory tasks compared to normal-cortisol controls. Moreover, the degree of hippocampal atrophy correlated strongly with both the degree of cortisol elevation over time and current basal cortisol levels. Therefore, basal cortisol elevation may cause hippocampal damage and impair hippocampus-dependent learning and memory in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons.

            We have used Golgi-impregnated tissue to demonstrate that exposure to excess glucocorticoids alters dendritic morphology in a specific population of neurons in the adult rat hippocampus. Daily injection of 10 mg of corticosterone for 21 days resulted in decreased numbers of apical dendritic branch points and decreased total apical dendritic length measured in a 100-microns-thick section in CA3 pyramidal cells compared to sham-injected and non-injected controls. In contrast, no changes were observed in CA3 pyramidal cell basal dendritic morphology. Furthermore, no changes were observed in the dendritic morphology of CA1 pyramidal cells or granule cells of the dentate gyrus. Cross-sectional cell body area of any of the 3 cell types examined in this study was unaffected by corticosterone treatment. Finally, qualitative analysis of Nissl-stained tissue from the same brains revealed increased numbers of darkly staining, apparently shrunken CA3 pyramidal cells in corticosterone treated compared to control brains. The changes in dendritic morphology we have observed may be indicative of neurons in the early stages of degeneration, as prolonged exposure to high levels of corticosterone has been shown by others to result in a loss of CA3 pyramidal cells. Additionally, these results suggest possible structural alterations which may occur under physiological conditions in which corticosterone levels are chronically elevated such as in aged animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stress and glucocorticoids impair retrieval of long-term spatial memory.

              Extensive evidence from animal and human studies indicates that stress and glucocorticoids influence cognitive function. Previous studies have focused exclusively on glucocorticoid effects on acquisition and long-term storage of newly acquired information. Here we report that stress and glucocorticoids also affect memory retrieval. We show that rats have impaired performance in a water-maze spatial task after being given footshock 30 min before retention testing but are not impaired when footshock is given 2 min or 4 h before testing. These time-dependent effects on retention performance correspond to the circulating corticosterone levels at the time of testing, which suggests that the retention impairment is directly related to increased adrenocortical function. In support of this idea, we find that suppression of corticosterone synthesis with metyrapone blocks the stress-induced retention impairment. In addition, systemic corticosterone administered to non-stressed rats 30 min before retention testing induces dose-dependent retention impairment. The impairing effects of stress and glucocorticoids on retention are not due to disruption of spatial navigation per se. Our results indicate that besides the well described effects of stress and glucocorticoids on acquisition and consolidation processes, glucocorticoids also affect memory retrieval mechanisms.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2007
                May 2007
                05 April 2007
                : 85
                : 2
                : 71-80
                Affiliations
                aDepartment of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, S.C., bHarold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, N.Y., and cDepartment of Biochemistry and Obstetrics and Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, N.Y., USA
                Article
                101694 Neuroendocrinology 2007;85:71–80
                10.1159/000101694
                17426391
                30e818df-496a-4202-972f-7a70705b9c7b
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 7, Tables: 2, References: 72, Pages: 10
                Categories
                Appetite and Energy Balance

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Glucocorticoid,Diabetes,Insulin resistance,Hyperglycemia,Akt levels,Glucose

                Comments

                Comment on this article