20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coordinated regulation for nature products discovery and overproduction in Streptomyces

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Streptomyces is an important treasure trove for natural products discovery. In recent years, many scientists focused on the genetic modification and metabolic regulation of Streptomyces to obtain diverse bioactive compounds with high yields. This review summarized the commonly used regulatory strategies for natural products discovery and overproduction in Streptomyces from three main aspects, including regulator-related strategies, promoter engineering, as well as other strategies employing transposons, signal factors, or feedback regulations. It is expected that the metabolic regulation network of Streptomyces will be elucidated more comprehensively to shed light on natural products research in the future.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters.

          Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the predicted BGCs revealed large gene cluster families, the vast majority uncharacterized. We experimentally characterized the most prominent family, consisting of two subfamilies of hundreds of BGCs distributed throughout the Proteobacteria; their products are aryl polyenes, lipids with an aryl head group conjugated to a polyene tail. We identified a distant relationship to a third subfamily of aryl polyene BGCs, and together the three subfamilies represent the largest known family of biosynthetic gene clusters, with more than 1,000 members. Although these clusters are widely divergent in sequence, their small molecule products are remarkably conserved, indicating for the first time the important roles these compounds play in Gram-negative cell biology. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions.

            The gel electrophoresis mobility shift assay (EMSA) is used to detect protein complexes with nucleic acids. It is the core technology underlying a wide range of qualitative and quantitative analyses for the characterization of interacting systems. In the classical assay, solutions of protein and nucleic acid are combined and the resulting mixtures are subjected to electrophoresis under native conditions through polyacrylamide or agarose gel. After electrophoresis, the distribution of species containing nucleic acid is determined, usually by autoradiography of 32P-labeled nucleic acid. In general, protein-nucleic acid complexes migrate more slowly than the corresponding free nucleic acid. In this protocol, we identify the most important factors that determine the stabilities and electrophoretic mobilities of complexes under assay conditions. A representative protocol is provided and commonly used variants are discussed. Expected outcomes are briefly described. References to extensions of the method and a troubleshooting guide are provided.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discovery of microbial natural products by activation of silent biosynthetic gene clusters.

              Microorganisms produce a wealth of structurally diverse specialized metabolites with a remarkable range of biological activities and a wide variety of applications in medicine and agriculture, such as the treatment of infectious diseases and cancer, and the prevention of crop damage. Genomics has revealed that many microorganisms have far greater potential to produce specialized metabolites than was thought from classic bioactivity screens; however, realizing this potential has been hampered by the fact that many specialized metabolite biosynthetic gene clusters (BGCs) are not expressed in laboratory cultures. In this Review, we discuss the strategies that have been developed in bacteria and fungi to identify and induce the expression of such silent BGCs, and we briefly summarize methods for the isolation and structural characterization of their metabolic products.
                Bookmark

                Author and article information

                Contributors
                Journal
                Synth Syst Biotechnol
                Synth Syst Biotechnol
                Synthetic and Systems Biotechnology
                KeAi Publishing
                2405-805X
                20 April 2020
                June 2020
                20 April 2020
                : 5
                : 2
                : 49-58
                Affiliations
                [a ]Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
                [b ]Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
                Author notes
                []Corresponding author. Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. yunzi.luo@ 123456tju.edu.cn
                [1]

                These authors contribute equally to this work.

                Article
                S2405-805X(20)30021-1
                10.1016/j.synbio.2020.04.002
                7176746
                32346621
                30edd123-cb97-4f3c-82b0-20f42f17e9db
                © 2020 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 2 March 2020
                : 4 April 2020
                : 8 April 2020
                Categories
                Article

                gene expression regulation,natural products,streptomyces,biosynthetic gene clusters

                Comments

                Comment on this article