37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks.

      Proceedings of the National Academy of Sciences of the United States of America
      Proceedings of the National Academy of Sciences
      historical ecology, global change, forest, climatic water deficit

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We document changes in forest structure between historical (1930s) and contemporary (2000s) surveys of California vegetation through comparisons of tree abundance and size across the state and within several ecoregions. Across California, tree density in forested regions increased by 30% between the two time periods, whereas forest biomass in the same regions declined, as indicated by a 19% reduction in basal area. These changes reflect a demographic shift in forest structure: larger trees (>61 cm diameter at breast height) have declined, whereas smaller trees (<30 cm) have increased. Large tree declines were found in all surveyed regions of California, whereas small tree increases were found in every region except the south and central coast. Large tree declines were more severe in areas experiencing greater increases in climatic water deficit since the 1930s, based on a hydrologic model of water balance for historical climates through the 20th century. Forest composition in California in the last century has also shifted toward increased dominance by oaks relative to pines, a pattern consistent with warming and increased water stress, and also with paleohistoric shifts in vegetation in California over the last 150,000 y.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Old-growth forests as global carbon sinks.

          Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The interdependence of mechanisms underlying climate-driven vegetation mortality.

              Climate-driven vegetation mortality is occurring globally and is predicted to increase in the near future. The expected climate feedbacks of regional-scale mortality events have intensified the need to improve the simple mortality algorithms used for future predictions, but uncertainty regarding mortality processes precludes mechanistic modeling. By integrating new evidence from a wide range of fields, we conclude that hydraulic function and carbohydrate and defense metabolism have numerous potential failure points, and that these processes are strongly interdependent, both with each other and with destructive pathogen and insect populations. Crucially, most of these mechanisms and their interdependencies are likely to become amplified under a warmer, drier climate. Here, we outline the observations and experiments needed to test this interdependence and to improve simulations of this emergent global phenomenon. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                25605888
                4321274
                10.1073/pnas.1410186112

                historical ecology,global change,forest,climatic water deficit

                Comments

                Comment on this article