66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant Defense against Herbivorous Pests: Exploiting Resistance and Tolerance Traits for Sustainable Crop Protection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interactions between plants and insect herbivores are important determinants of plant productivity in managed and natural vegetation. In response to attack, plants have evolved a range of defenses to reduce the threat of injury and loss of productivity. Crop losses from damage caused by arthropod pests can exceed 15% annually. Crop domestication and selection for improved yield and quality can alter the defensive capability of the crop, increasing reliance on artificial crop protection. Sustainable agriculture, however, depends on reduced chemical inputs. There is an urgent need, therefore, to identify plant defensive traits for crop improvement. Plant defense can be divided into resistance and tolerance strategies. Plant traits that confer herbivore resistance typically prevent or reduce herbivore damage through expression of traits that deter pests from settling, attaching to surfaces, feeding and reproducing, or that reduce palatability. Plant tolerance of herbivory involves expression of traits that limit the negative impact of herbivore damage on productivity and yield. Identifying the defensive traits expressed by plants to deter herbivores or limit herbivore damage, and understanding the underlying defense mechanisms, is crucial for crop scientists to exploit plant defensive traits in crop breeding. In this review, we assess the traits and mechanisms underpinning herbivore resistance and tolerance, and conclude that physical defense traits, plant vigor and herbivore-induced plant volatiles show considerable utility in pest control, along with mixed species crops. We highlight emerging approaches for accelerating the identification of plant defensive traits and facilitating their deployment to improve the future sustainability of crop protection.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of plant defense against insect herbivores.

          Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ecology and evolution of plant tolerance to herbivory.

            The tolerance of plants to herbivory reflects the degree to which a plant can regrow and reproduce after damage from herbivores. Autoecological factors, as well as the influence of competitors and mutualists, affect the level of plant tolerance. Recent work indicates that there is a heritable basis for tolerance and that it can evolve in natural plant populations. Although tolerance is probably not a strict alternative to plant resistance, there could be inter- and intraspecific tradeoffs between these defensive strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops.

              Domesticated food crops are derived from a phylogenetically diverse assemblage of wild ancestors through artificial selection for different traits. Our understanding of domestication, however, is based upon a subset of well-studied 'model' crops, many of them from the Poaceae family. Here, we investigate domestication traits and theories using a broader range of crops. We reviewed domestication information (e.g. center of domestication, plant traits, wild ancestors, domestication dates, domestication traits, early and current uses) for 203 major and minor food crops. Compiled data were used to test classic and contemporary theories in crop domestication. Many typical features of domestication associated with model crops, including changes in ploidy level, loss of shattering, multiple origins, and domestication outside the native range, are less common within this broader dataset. In addition, there are strong spatial and temporal trends in our dataset. The overall time required to domesticate a species has decreased since the earliest domestication events. The frequencies of some domestication syndrome traits (e.g. nonshattering) have decreased over time, while others (e.g. changes to secondary metabolites) have increased. We discuss the influences of the ecological, evolutionary, cultural and technological factors that make domestication a dynamic and ongoing process. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                29 July 2016
                2016
                : 7
                : 1132
                Affiliations
                [1] 1Ecological Sciences, The James Hutton Institute Dundee, UK
                [2] 2Cell and Molecular Sciences, The James Hutton Institute Dundee, UK
                Author notes

                Edited by: Sarah Mansfield, AgResearch, New Zealand

                Reviewed by: Joop J. A. Van Loon, Wageningen University and Research Centre, Netherlands; Johan A. Stenberg, Swedish University of Agricultural Sciences, Sweden

                *Correspondence: Carolyn Mitchell, carolyn.mitchell@ 123456hutton.ac.uk

                This article was submitted to Crop Science and Horticulture, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2016.01132
                4965446
                27524994
                3106d770-732a-449e-a7b0-dc01d6129ef0
                Copyright © 2016 Mitchell, Brennan, Graham and Karley.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 February 2016
                : 15 July 2016
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 73, Pages: 8, Words: 0
                Categories
                Plant Science
                Mini Review

                Plant science & Botany
                agro-ecosystem,arthropod,crop improvement,insect,natural enemy,trophic interactions

                Comments

                Comment on this article