15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of enteral and parenteral feeding on secretion of orexigenic peptides in infants

      research-article
      1 , , 1
      BMC Gastroenterology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The feeding in the first months of the life seems to influence the risks of obesity and affinity to some diseases including atherosclerosis. The mechanisms of these relations are unknown, however, the modification of hormonal action can likely be taken into account. Therefore, in this study the levels of ghrelin and orexin A - peripheral and central peptide from the orexigenic gut-brain axis were determined.

          Methods

          Fasting and one hour after the meal plasma concentrations of ghrelin and orexin were measured in breast-fed (group I; n = 17), milk formula-fed (group II; n = 16) and highly hydrolyzed, hypoallergic formula-fed (group III; n = 14) groups, age matched infants (mean 4 months) as well as in children with iv provision of nutrients (glucose - group IV; n = 15; total parenteral nutrition - group V; n = 14). Peptides were determined using EIA commercial kits.

          Results

          Despite the similar caloric intake in orally fed children the fasting ghrelin and orexin levels were significantly lower in the breast-fed children (0.37 ± 0.17 and 1.24 ± 0.29 ng/ml, respectively) than in the remaining groups (0.5 ± 0.27 and 1.64 ± 0.52 ng/ml, respectively in group II and 0.77 ± 0.27 and 2.04 ± 1.1 ng/ml, respectively, in group III). The postprandial concentrations of ghrelin increased to 0.87 ± 0.29 ng/ml, p < 0.002 and 0.76 ± 0.26 ng/ml, p < 0.01 in groups I and II, respectively as compared to fasting values. The decrease in concentration of ghrelin after the meal was observed only in group III (0.47 ± 0.24 ng/ml). The feeding did not influence the orexin concentration. In groups IV and V the ghrelin and orexin levels resembled those in milk formula-fed children.

          Conclusion

          The highly hydrolyzed diet strongly affects fasting and postprandial ghrelin and orexin plasma concentrations with possible negative effect on short- and long-time effects on development. Also total parenteral nutrition with the continuous stimulation and lack of fasting/postprandial modulation might be responsible for disturbed development in children fed this way.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior.

          The hypothalamus plays a central role in the integrated control of feeding and energy homeostasis. We have identified two novel neuropeptides, both derived from the same precursor by proteolytic processing, that bind and activate two closely related (previously) orphan G protein-coupled receptors. These peptides, termed orexin-A and -B, have no significant structural similarities to known families of regulatory peptides. prepro-orexin mRNA and immunoreactive orexin-A are localized in neurons within and around the lateral and posterior hypothalamus in the adult rat brain. When administered centrally to rats, these peptides stimulate food consumption. prepro-orexin mRNA level is up-regulated upon fasting, suggesting a physiological role for the peptides as mediators in the central feedback mechanism that regulates feeding behavior.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity.

            We describe a hypothalamus-specific mRNA that encodes preprohypocretin, the putative precursor of a pair of peptides that share substantial amino acid identities with the gut hormone secretin. The hypocretin (Hcrt) protein products are restricted to neuronal cell bodies of the dorsal and lateral hypothalamic areas. The fibers of these neurons are widespread throughout the posterior hypothalamus and project to multiple targets in other areas, including brainstem and thalamus. Hcrt immunoreactivity is associated with large granular vesicles at synapses. One of the Hcrt peptides was excitatory when applied to cultured, synaptically coupled hypothalamic neurons, but not hippocampal neurons. These observations suggest that the hypocretins function within the CNS as neurotransmitters.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats.

              Visceral sensory information is transmitted to the brain through the afferent vagus nerve. Ghrelin, a peptide primarily produced in the stomach, stimulates both feeding and growth hormone (GH) secretion. How stomach-derived ghrelin exerts these central actions is still unknown. Here we determined the role of the gastric afferent vagal nerve in ghrelin's functions. Food intake and GH secretion were examined after an administration of ghrelin intravenously (IV) to rats with vagotomy or perivagal application of capsaicin, a specific afferent neurotoxin. We investigated Fos expression in neuropeptide Y (NPY)-producing and growth hormone-releasing hormone (GHRH)-producing neurons by immunohistochemistry after administration IV of ghrelin to these rats. The presence of the ghrelin receptor in vagal afferent neurons was assessed by using reverse-transcription polymerase chain reaction and in situ hybridization histochemistry. A binding study on the vagus nerve by (125)I-ghrelin was performed to determine the transport of the ghrelin receptor from vagus afferent neurons to the periphery. We recorded the electric discharge of gastric vagal afferent induced by ghrelin and compared it with that by cholecystokinin (CCK), an anorectic gut peptide. Blockade of the gastric vagal afferent abolished ghrelin-induced feeding, GH secretion, and activation of NPY-producing and GHRH-producing neurons. Ghrelin receptors were synthesized in vagal afferent neurons and transported to the afferent terminals. Ghrelin suppressed firing of the vagal afferent, whereas CCK stimulated it. This study indicated that the gastric vagal afferent is the major pathway conveying ghrelin's signals for starvation and GH secretion to the brain.
                Bookmark

                Author and article information

                Journal
                BMC Gastroenterol
                BMC Gastroenterology
                BioMed Central
                1471-230X
                2009
                10 December 2009
                : 9
                : 92
                Affiliations
                [1 ]Department of Clinical Biochemistry, Polish-American Children's Hospital, Jagiellonian University, Wielicka St 265, 30-663 Krakow, Poland
                Article
                1471-230X-9-92
                10.1186/1471-230X-9-92
                2803482
                20003268
                3108f3d7-d54e-4096-8d71-7e2694e52082
                Copyright ©2009 Tomasik and Sztefko; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 April 2009
                : 10 December 2009
                Categories
                Research Article

                Gastroenterology & Hepatology
                Gastroenterology & Hepatology

                Comments

                Comment on this article