49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Repeatability of intraocular pressure measurements with Icare PRO rebound, Tono-Pen AVIA, and Goldmann tonometers in sitting and reclining positions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Icare PRO (ICP) is a new Rebound tonometer that is able to measure intraocular pressure (IOP) in both sitting and reclining positions. In this study, the gold standard Goldmann tonometer (GAT) was compared to ICP and Tono-Pen AVIA (TPA). Hypothesis was that repeatability of GAT is superior to ICP and TPA.

          Methods

          36 eyes of 36 healthy caucasian individuals, 13 male and 26 females, 17 right and 19 left eyes have been included in this prospective, randomized, cross-sectional study. The study was conducted at a single site (Dept. of Ophthalmology, UniversityHospital Zurich, Switzerland). Primary outcome measures were Intraclass correlation coefficients (ICC) and coefficients of variation (COV) and test-retest repeatability as visualized by Bland-Altman analysis. Secondary outcome measures were IOP in sitting (GAT, ICP and TPA) and in reclining (ICP and TPA) position.

          Results

          Mean IOP measured by GAT was 14.9±3.5 mmHg. Mean IOP measured by ICP was 15.6±3.1 mmHg (with TPA 14.8±2.7 mmHg) in sitting and 16.5±3.5 mmHg (with TPA 17.0±3.0 mmHg) in reclining positions. COVs ranged from 2.9% (GAT) to 6.9% (ICP reclining) and ICCs from 0.819 (ICP reclining) to 0.972 (GAT).

          Conclusions

          Repeatability is good with all three devices. GAT has higher repeatability compared to the two tested hand-held devices with lowest COVs and highest ICCs. IOP was higher in the reclining compared to the sitting position.

          Trial registration

          The study was registered to the Clinical Trials Register of the US National Institute of Health, NCT01325324.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical methods for assessing agreement between two methods of clinical measurement.

          In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old. Such investigations are often analysed inappropriately, notably by using correlation coefficients. The use of correlation is misleading. An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comparison of four methods of tonometry: method agreement and interobserver variability.

            To compare the inter-method agreement in intraocular pressure (IOP) measurements made with four different tonometric methods. IOP was measured with the Goldmann applanation tonometer (GAT), Tono-Pen XL, ocular blood flow tonograph (OBF), and Canon TX-10 non-contact tonometer (NCT) in a randomised order in one eye of each of 105 patients with ocular hypertension or glaucoma. Three measurements were made with each method, and by each of two independent GAT observers. GAT interobserver and tonometer inter-method agreement was assessed by the Bland-Altman method. The outcome measures were 95% limits of agreement for IOP measurements between GAT observers and between tonometric methods, and 95% confidence intervals for intra-session repeated measurements. The mean differences (bias) in IOP measurements were 0.4 mm Hg between GAT observers, and 0.6 mm Hg, 0.1 mm Hg, and 0.7 mm Hg between GAT and Tono-Pen, OBF, and NCT, respectively. The 95% limits of agreement were smallest (bias +/-2.6 mm Hg) between GAT observers, and larger for agreement between the GAT and the Tono-Pen, OBF, and NCT (bias +/-6.7, +/-5.5, and +/-4.8 mm Hg, respectively). The OBF and NCT significantly underestimated GAT measurements at lower IOP and overestimated these at higher IOP. The repeatability coefficients for intra-session repeated measurement for each method were +/-2.2 mm Hg and +/-2.5 mm Hg for the GAT, +/-4.3 mm Hg for the Tono-Pen, +/-3.7 mm Hg for the OBF, and +/-3.2 mm Hg for the NCT. There was good interobserver agreement with the GAT and moderate agreement between the NCT and GAT. The differences between the GAT and OBF and between the GAT and Tono-Pen probably preclude the OBF and Tono-Pen from routine clinical use as objective methods to measure IOP in normal adult eyes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of dynamic contour tonometry with goldmann applanation tonometry.

              The dynamic contour tonometer (DCT; Pascal tonometer) is a novel tonometer designed to measure intraocular pressure (IOP) independent of corneal properties. The purpose of this study was a comparison of the DCT with the Goldmann applanation tonometer (GAT) with respect to mean of IOP readings, the influence of ocular structural factors on IOP readings, and both intra- and interobserver variability, in a large group of healthy subjects. In a prospective study of 228 eyes, IOP measurements by GAT and DCT were compared, and the effects of central corneal thickness (CCT), corneal curvature, axial length, and anterior chamber depth were analyzed. To evaluate intra- and interobserver variability, IOP was measured in eight eyes by four observers. There was a high concordance between the IOP readings obtained by DCT and GAT. However, IOP readings were consistently higher with DCT than with GAT (median difference: +1.7 mm Hg, interquartile range [25th-75th percentile] = 0.8-2.7 mm Hg). In contrast to GAT, multivariable regression analysis showed no significant effect of corneal thickness, corneal curvature, astigmatism, anterior chamber depth, and axial length on DCT readings. For repeated measurements the intraobserver variability was 0.65 mm Hg for the DCT and 1.1 mm Hg for the GAT (P = 0.008). Interobserver variability was 0.44 mm Hg for the DCT and 1.28 mm Hg for the GAT (P = 0.017). IOP measurements by DCT are highly concordant with IOP readings obtained from GAT but do not vary in CCT and have a lower intra- and interobserver variability. DCT seems to be an appropriate method of tonometry for routine clinical use. Copyright Association for Research in Vision and Ophthalmology
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Ophthalmol
                BMC Ophthalmol
                BMC Ophthalmology
                BioMed Central
                1471-2415
                2013
                5 September 2013
                : 13
                : 44
                Affiliations
                [1 ]Department of Ophthalmology, UniversityHospital Zurich, Frauenklinikstrasse 24, 8091 Zurich, Switzerland
                [2 ]Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, Massachusetts 02144, USA
                Article
                1471-2415-13-44
                10.1186/1471-2415-13-44
                3844420
                24006952
                310c2f08-7b65-4a81-80cc-fad719060a10
                Copyright © 2013 Schweier et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 November 2012
                : 30 August 2013
                Categories
                Research Article

                Ophthalmology & Optometry
                Ophthalmology & Optometry

                Comments

                Comment on this article