130
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Relationship between Tuberculosis and Influenza Death during the Influenza (H1N1) Pandemic from 1918-19

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The epidemiological mechanisms behind the W-shaped age-specific influenza mortality during the Spanish influenza (H1N1) pandemic 1918-19 have yet to be fully clarified. The present study aimed to develop a formal hypothesis: tuberculosis (TB) was associated with the W-shaped influenza mortality from 1918-19. Three pieces of epidemiological information were assessed: (i) the epidemic records containing the age-specific numbers of cases and deaths of influenza from 1918-19, (ii) an outbreak record of influenza in a Swiss TB sanatorium during the pandemic, and (iii) the age-dependent TB mortality over time in the early 20th century. Analyzing the data (i), we found that the W-shaped pattern was not only seen in mortality but also in the age-specific case fatality ratio, suggesting the presence of underlying age-specific risk factor(s) of influenza death among young adults. From the data (ii), TB was shown to be associated with influenza death ( P = 0.09), and there was no influenza death among non-TB controls. The data (iii) were analyzed by employing the age-period-cohort model, revealing harvesting effect in the period function of TB mortality shortly after the 1918-19 pandemic. These findings suggest that it is worthwhile to further explore the role of TB in characterizing the age-specific risk of influenza death.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          1918 Influenza: the Mother of All Pandemics

          The "Spanish" influenza pandemic of 1918–1919, which caused ≈50 million deaths worldwide, remains an ominous warning to public health. Many questions about its origins, its unusual epidemiologic features, and the basis of its pathogenicity remain unanswered. The public health implications of the pandemic therefore remain in doubt even as we now grapple with the feared emergence of a pandemic caused by H5N1 or other virus. However, new information about the 1918 virus is emerging, for example, sequencing of the entire genome from archival autopsy tissues. But, the viral genome alone is unlikely to provide answers to some critical questions. Understanding the 1918 pandemic and its implications for future pandemics requires careful experimentation and in-depth historical analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of the 1918 influenza virus polymerase genes.

            The influenza A viral heterotrimeric polymerase complex (PA, PB1, PB2) is known to be involved in many aspects of viral replication and to interact with host factors, thereby having a role in host specificity. The polymerase protein sequences from the 1918 human influenza virus differ from avian consensus sequences at only a small number of amino acids, consistent with the hypothesis that they were derived from an avian source shortly before the pandemic. However, when compared to avian sequences, the nucleotide sequences of the 1918 polymerase genes have more synonymous differences than expected, suggesting evolutionary distance from known avian strains. Here we present sequence and phylogenetic analyses of the complete genome of the 1918 influenza virus, and propose that the 1918 virus was not a reassortant virus (like those of the 1957 and 1968 pandemics), but more likely an entirely avian-like virus that adapted to humans. These data support prior phylogenetic studies suggesting that the 1918 virus was derived from an avian source. A total of ten amino acid changes in the polymerase proteins consistently differentiate the 1918 and subsequent human influenza virus sequences from avian virus sequences. Notably, a number of the same changes have been found in recently circulating, highly pathogenic H5N1 viruses that have caused illness and death in humans and are feared to be the precursors of a new influenza pandemic. The sequence changes identified here may be important in the adaptation of influenza viruses to humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project.

              To estimate the risk and prevalence of Mycobacterium tuberculosis (MTB) infection and tuberculosis (TB) incidence, prevalence, and mortality, including disease attributable to human immunodeficiency virus (HIV), for 212 countries in 1997. A panel of 86 TB experts and epidemiologists from more than 40 countries was chosen by the World Health Organization (WHO), with final agreement being reached between country experts and WHO staff. Incidence of TB and mortality in each country was determined by (1) case notification to the WHO, (2) annual risk of infection data from tuberculin surveys, and (3) data on prevalence of smear-positive pulmonary disease from prevalence surveys. Estimates derived from relatively poor data were strongly influenced by panel member opinion. Objective estimates were derived from high-quality data collected recently by approved procedures. Agreement was reached by (1) participants reviewing methods and data and making provisional estimates in closed workshops held at WHO's 6 regional offices, (2) principal authors refining estimates using standard methods and all available data, and (3) country experts reviewing and adjusting these estimates and reaching final agreement with WHO staff. In 1997, new cases of TB totaled an estimated 7.96 million (range, 6.3 million-11.1 million), including 3.52 million (2.8 million-4.9 million) cases (44%) of infectious pulmonary disease (smear-positive), and there were 16.2 million (12.1 million-22.5 million) existing cases of disease. An estimated 1.87 million (1.4 million-2.8 million) people died of TB and the global case fatality rate was 23% but exceeded 50% in some African countries with high HIV rates. Global prevalence of MTB infection was 32% (1.86 billion people). Eighty percent of all incident TB cases were found in 22 countries, with more than half the cases occurring in 5 Southeast Asian countries. Nine of 10 countries with the highest incidence rates per capita were in Africa. Prevalence of MTB/HIV coinfection worldwide was 0.18% and 640000 incident TB cases (8%) had HIV infection. The global burden of tuberculosis remains enormous, mainly because of poor control in Southeast Asia, sub-Saharan Africa, and eastern Europe, and because of high rates of M tuberculosis and HIV coinfection in some African countries.
                Bookmark

                Author and article information

                Journal
                Comput Math Methods Med
                Comput Math Methods Med
                CMMM
                Computational and Mathematical Methods in Medicine
                Hindawi Publishing Corporation
                1748-670X
                1748-6718
                2012
                17 July 2012
                : 2012
                : 124861
                Affiliations
                1Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 358GA Utrecht, The Netherlands
                2Theoretical Epidemiology, Faculty of Veterinary Medicine, University of Utrecht, 3584CL Utrecht, The Netherlands
                3School of Public Health, The University of Hong Kong, Level 6, Core F, Cyberport 3, Pokfulam, Hong Kong
                4PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
                Author notes
                *Hiroshi Nishiura: nishiura@ 123456hku.hk

                Academic Editor: Joe Wu

                Article
                10.1155/2012/124861
                3405656
                22848231
                3119c09c-0f47-4086-92d2-b26b6eda3168
                Copyright © 2012 W. Oei and H. Nishiura.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 May 2012
                : 28 May 2012
                : 4 June 2012
                Categories
                Research Article

                Applied mathematics
                Applied mathematics

                Comments

                Comment on this article