193
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interplay between Cartilage and Subchondral Bone Contributing to Pathogenesis of Osteoarthritis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoarthritis (OA) is a common debilitating joint disorder, affecting large sections of the population with significant disability and impaired quality of life. During OA, functional units of joints comprising cartilage and subchondral bone undergo uncontrolled catabolic and anabolic remodeling processes to adapt to local biochemical and biological signals. Changes in cartilage and subchondral bone are not merely secondary manifestations of OA but are active components of the disease, contributing to its severity. Increased vascularization and formation of microcracks in joints during OA have suggested the facilitation of molecules from cartilage to bone and vice versa. Observations from recent studies support the view that both cartilage and subchondral bone can communicate with each other through regulation of signaling pathways for joint homeostasis under pathological conditions. In this review we have tried to summarize the current knowledge on the major signaling pathways that could control the cartilage-bone biochemical unit in joints and participate in intercellular communication between cartilage and subchondral bone during the process of OA. An understanding of molecular communication that regulates the functional behavior of chondrocytes and osteoblasts in both physiological and pathological conditions may lead to development of more effective strategies for treating OA patients.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          WNT signaling in bone homeostasis and disease: from human mutations to treatments.

          Low bone mass and strength lead to fragility fractures, for example, in elderly individuals affected by osteoporosis or children with osteogenesis imperfecta. A decade ago, rare human mutations affecting bone negatively (osteoporosis-pseudoglioma syndrome) or positively (high-bone mass phenotype, sclerosteosis and Van Buchem disease) have been identified and found to all reside in components of the canonical WNT signaling machinery. Mouse genetics confirmed the importance of canonical Wnt signaling in the regulation of bone homeostasis, with activation of the pathway leading to increased, and inhibition leading to decreased, bone mass and strength. The importance of WNT signaling for bone has also been highlighted since then in the general population in numerous genome-wide association studies. The pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture. This paper reviews our current understanding of the mechanisms by which WNT signalng regulates bone homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone remodelling in osteoarthritis.

            The classical view of the pathogenesis of osteoarthritis (OA) is that subchondral sclerosis is associated with, and perhaps causes, age-related joint degeneration. Recent observations have demonstrated that OA is associated with early loss of bone owing to increased bone remodelling, followed by slow turnover leading to densification of the subchondral plate and complete loss of cartilage. Subchondral densification is a late event in OA that involves only the subchondral plate and calcified cartilage; the subchondral cancellous bone beneath the subchondral plate may remain osteopenic. In experimental models, inducing subchondral sclerosis without allowing the prior stage of increased bone remodelling to occur does not lead to progressive OA. Therefore, both early-stage increased remodelling and bone loss, and the late-stage slow remodelling and subchondral densification are important components of the pathogenetic process that leads to OA. The apparent paradoxical observations that OA is associated with both increased remodelling and osteopenia, as well as decreased remodelling and sclerosis, are consistent with the spatial and temporal separation of these processes during joint degeneration. This Review provides an overview of current knowledge on OA and discusses the role of subchondral bone in the initiation and progression of OA. A hypothetical model of OA pathogenesis is proposed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.

              The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                October 2013
                30 September 2013
                : 14
                : 10
                : 19805-19830
                Affiliations
                Infectious Diseases Medical Research Center/Institute for Skeletal Aging, College of Medicine, Hallym University, Chuncheon 200702, Korea; E-Mails: boneresearch@ 123456hallym.ac.kr (A.R.S.); supriya.jagga@ 123456gmail.com (S.J.); totalhip@ 123456hallym.ac.kr (S.-S.L.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: jsnam88@ 123456hallym.ac.kr ; Tel.: +82-33-248-3292; Fax: +82-33-248-3293.
                Article
                ijms-14-19805
                10.3390/ijms141019805
                3821588
                24084727
                312ff906-9260-4a2a-ac69-68d658b14d9d
                © 2013 by the authors; licensee MDPI, Basel, Switzerland

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 30 August 2013
                : 17 September 2013
                : 23 September 2013
                Categories
                Review

                Molecular biology
                osteoarthritis,wingless-type (wnt),bone morphogenic protein (bmp),mitogen-activated protein kinases (mapks),cartilage,subchondral bone

                Comments

                Comment on this article