6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid disintegrating tablets of simvastatin dispersions in polyoxyethylene–polypropylene block copolymer for maximized disintegration and dissolution

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of this research was to improve the dissolution of simvastatin and to incorporate it in rapid disintegrating tablets (RDTs) with an optimized disintegration and dissolution characteristics. Polyoxyethylene–polypropylene block copolymer (poloxamer 188) was employed as a hydrophilic carrier to prepare simvastatin solid dispersions (SDs). Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and X-ray diffractometry were employed to understand the interaction between the drug and the carrier in the solid state. The results obtained from Fourier transform infrared spectroscopy showed absence of any chemical interaction between the drug and poloxamer. The results of differential scanning calorimetry and X-ray diffractometry confirmed the conversion of simvastatin to distorted crystalline state. The SD of 1:2 w/w drug to carrier ratio showed the highest dissolution; hence, it was incorporated in RDT formulations using a 3 2 full factorial design and response surface methodology. The initial assessments of RDTs demonstrated an acceptable flow, hardness, and friability to indicate good mechanical strength. The interaction and Pareto charts indicated that percentage of croscarmellose sodium incorporated was the most important factor affecting the disintegration time and dissolution parameter followed by the hardness value and their interaction effect. Compression force showed a superior influence to increase RDT’s porosity and to fasten disintegration rather than swelling action by croscarmellose sodium. On the other hand, croscarmellose sodium was most important for the initial simvastatin release. The results suggest the potential use of poloxamer 188-based SD in RDT for the oral delivery of poor water-soluble antihyperlipidemic drug, simvastatin.

          Related collections

          Most cited references 33

          • Record: found
          • Abstract: found
          • Article: not found

          Lipid screening and cardiovascular health in childhood.

          This clinical report replaces the 1998 policy statement from the American Academy of Pediatrics on cholesterol in childhood, which has been retired. This report has taken on new urgency given the current epidemic of childhood obesity with the subsequent increasing risk of type 2 diabetes mellitus, hypertension, and cardiovascular disease in older children and adults. The approach to screening children and adolescents with a fasting lipid profile remains a targeted approach. Overweight children belong to a special risk category of children and are in need of cholesterol screening regardless of family history or other risk factors. This report reemphasizes the need for prevention of cardiovascular disease by following Dietary Guidelines for Americans and increasing physical activity and also includes a review of the pharmacologic agents and indications for treating dyslipidemia in children.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors.

            The HMG-CoA reductase inhibitors (statins) are effective in both the primary and secondary prevention of ischaemic heart disease. As a group, these drugs are well tolerated apart from two uncommon but potentially serious adverse effects: elevation of liver enzymes and skeletal muscle abnormalities, which range from benign myalgias to life-threatening rhabdomyolysis. Adverse effects with statins are frequently associated with drug interactions because of their long-term use in older patients who are likely to be exposed to polypharmacy. The recent withdrawal of cerivastatin as a result of deaths from rhabdomyolysis illustrates the clinical importance of such interactions. Drug interactions involving the statins may have either a pharmacodynamic or pharmacokinetic basis, or both. As these drugs are highly extracted by the liver, displacement interactions are of limited importance. The cytochrome P450 (CYP) enzyme system plays an important part in the metabolism of the statins, leading to clinically relevant interactions with other agents, particularly cyclosporin, erythromycin, itraconazole, ketoconazole and HIV protease inhibitors, that are also metabolised by this enzyme system. An additional complicating feature is that individual statins are metabolised to differing degrees, in some cases producing active metabolites. The CYP3A family metabolises lovastatin, simvastatin, atorvastatin and cerivastatin, whereas CYP2C9 metabolises fluvastatin. Cerivastatin is also metabolised by CYP2C8. Pravastatin is not significantly metabolised by the CYP system. In addition, the statins are substrates for P-glycoprotein, a drug transporter present in the small intestine that may influence their oral bioavailability. In clinical practice, the risk of a serious interaction causing myopathy is enhanced when statin metabolism is markedly inhibited. Thus, rhabdomyolysis has occurred following the coadministration of cyclosporin, a potent CYP3A4 and P-glycoprotein inhibitor, and lovastatin. Itraconazole has been shown to increase exposure to simvastatin and its active metabolite by at least 10-fold. Pharmacodynamically, there is an increased risk of myopathy when statins are coprescribed with fibrates or nicotinic acid. This occurs relatively infrequently, but is particularly associated with the combination of cerivastatin and gemfibrozil. Statins may also alter the concentrations of other drugs, such as warfarin or digoxin, leading to alterations in effect or a requirement for clinical monitoring. Knowledge of the pharmacokinetic properties of the statins should allow the avoidance of the majority of drug interactions. If concurrent therapy with known inhibitors of statin metabolism is necessary, the patient should be monitored for signs and symptoms of myopathy or rhabdomyolysis and the statin should be discontinued if necessary.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preparation, characterization and in vivo evaluation of ibuprofen binary solid dispersions with poloxamer 188.

              Ibuprofen-Poloxamer 188 (P 188) binary solid dispersions (SD) with different drug loadings were prepared, characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR), and evaluated for solubility, in vitro release, and oral bioavailability of ibuprofen in rats. Loss of their individual surface properties during melting and solidification as revealed by SEM micrographs indicated the formation of effective SDs. Absence or shifting towards the lower melting temperature of the drug peak in SDs and physical mixtures in DSC study indicated the possibilities of its interactions with P 188. However, no such interactions in the solid state were confirmed by FTIR spectra which showed the presence of drug crystalline in SDs. Immediate and complete release of ibuprofen from SDs might be because of the reduction in the drug crystalline due to eutectic formation, and their dosing to fasted rats resulted in a significant increase in the area under curve (AUC) of the plasma concentration versus time curve and the maximum plasma concentration (Cmax), and a significant decrease in the time to reach Cmax (Tmax) over ibuprofen and physical mixtures.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2016
                03 October 2016
                : 10
                : 3211-3223
                Affiliations
                [1 ]Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
                [2 ]Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig
                [3 ]Department of Pharmaceutics, Faculty of Pharmacy, El-Minia University, El-Minia
                [4 ]Department of Pharmaceutics, Faculty of Pharmacy, Tanta University, Tanta, Egypt
                Author notes
                Correspondence: Gehan F Balata, Faculty of Pharmacy, Umm Al-Qura University, PO Box 715, Makkah 21421, Saudi Arabia, Tel +966 5 4184 1800, Fax +966 2 550 7042 4225, Email jfsyed@ 123456uqu.edu.sa
                Article
                dddt-10-3211
                10.2147/DDDT.S114724
                5055116
                © 2016 Balata et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article