6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chronology Versus Biology : Telomeres, Essential Hypertension, and Vascular Aging

      1
      Hypertension
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is considerable evidence that essential hypertension is closely linked to the growth, development, and aging of human beings. It is imperative, therefore, to introduce biological indicators of growth and aging into models developed to provide a better understanding of the etiology of essential hypertension. One of these indicators may well be the age-dependent telomere attrition rate in somatic cells. Telomere attrition registers the replicative history of somatic cells. As such, it chronicles not only the growth that results from the replication of somatic cells but also their turnover—a process that is strongly linked to inflammation and oxidative stress, which are key factors in the biology of human aging.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidants, oxidative stress and the biology of ageing.

          Living in an oxygenated environment has required the evolution of effective cellular strategies to detect and detoxify metabolites of molecular oxygen known as reactive oxygen species. Here we review evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The free radical theory of aging matures.

            The free radical theory of aging, conceived in 1956, has turned 40 and is rapidly attracting the interest of the mainstream of biological research. From its origins in radiation biology, through a decade or so of dormancy and two decades of steady phenomenological research, it has attracted an increasing number of scientists from an expanding circle of fields. During the past decade, several lines of evidence have convinced a number of scientists that oxidants play an important role in aging. (For the sake of simplicity, we use the term oxidant to refer to all "reactive oxygen species," including O2-., H2O2, and .OH, even though the former often acts as a reductant and produces oxidants indirectly.) The pace and scope of research in the last few years have been particularly impressive and diverse. The only disadvantage of the current intellectual ferment is the difficulty in digesting the literature. Therefore, we have systematically reviewed the status of the free radical theory, by categorizing the literature in terms of the various types of experiments that have been performed. These include phenomenological measurements of age-associated oxidative stress, interspecies comparisons, dietary restriction, the manipulation of metabolic activity and oxygen tension, treatment with dietary and pharmacological antioxidants, in vitro senescence, classical and population genetics, molecular genetics, transgenic organisms, the study of human diseases of aging, epidemiological studies, and the ongoing elucidation of the role of active oxygen in biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women.

              Since inflammation is believed to have a role in the pathogenesis of cardiovascular events, measurement of markers of inflammation has been proposed as a method to improve the prediction of the risk of these events. We conducted a prospective, nested case-control study among 28,263 apparently healthy postmenopausal women over a mean follow-up period of three years to assess the risk of cardiovascular events associated with base-line levels of markers of inflammation. The markers included high-sensitivity C-reactive protein (hs-CRP), serum amyloid A, interleukin-6, and soluble intercellular adhesion molecule type 1 (sICAM-1). We also studied homocysteine and a variety of lipid and lipoprotein measurements. Cardiovascular events were defined as death from coronary heart disease, nonfatal myocardial infarction or stroke, or the need for coronary-revascularization procedures. Of the 12 markers measured, hs-CRP was the strongest univariate predictor of the risk of cardiovascular events; the relative risk of events for women in the highest as compared with the lowest quartile for this marker was 4.4 (95 percent confidence interval, 2.2 to 8.9). Other markers significantly associated with the risk of cardiovascular events were serum amyloid A (relative risk for the highest as compared with the lowest quartile, 3.0), sICAM-1 (2.6), interleukin-6 (2.2), homocysteine (2.0), total cholesterol (2.4), LDL cholesterol (2.4), apolipoprotein B-100 (3.4), HDL cholesterol (0.3), and the ratio of total cholesterol to HDL cholesterol (3.4). Prediction models that incorporated markers of inflammation in addition to lipids were significantly better at predicting risk than models based on lipid levels alone (P<0.001). The levels of hs-CRP and serum amyloid A were significant predictors of risk even in the subgroup of women with LDL cholesterol levels below 130 mg per deciliter (3.4 mmol per liter), the target for primary prevention established by the National Cholesterol Education Program. In multivariate analyses, the only plasma markers that independently predicted risk were hs-CRP (relative risk for the highest as compared with the lowest quartile, 1.5; 95 percent confidence interval, 1.1 to 2.1) and the ratio of total cholesterol to HDL cholesterol (relative risk, 1.4; 95 percent confidence interval, 1.1 to 1.9). The addition of the measurement of C-reactive protein to screening based on lipid levels may provide an improved method of identifying persons at risk for cardiovascular events.
                Bookmark

                Author and article information

                Journal
                Hypertension
                Hypertension
                Ovid Technologies (Wolters Kluwer Health)
                0194-911X
                1524-4563
                September 2002
                September 2002
                : 40
                : 3
                : 229-232
                Affiliations
                [1 ]From the Hypertension Research Center, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ.
                Article
                10.1161/01.HYP.0000027280.91984.1B
                3149b969-a2be-434a-b3b5-7c0e659003b1
                © 2002
                History

                Comments

                Comment on this article