17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression of Protein-Coding Gene Orthologs in Zebrafish and Mouse Inner Ear Non-sensory Supporting Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-mammalian vertebrates, including zebrafish, retain the ability to regenerate hair cells (HCs) due to unknown molecular mechanisms that regulate proliferation and conversion of non-sensory supporting cells (nsSCs) to HCs. This regenerative capacity is not conserved in mammals. Identification of uniquely expressed orthologous genes in zebrafish nsSCs may reveal gene candidates involved in the proliferation and transdifferentiation of zebrafish nsSCs to HCs in the inner ear. A list of orthologous protein-coding genes was generated based on an Ensembl Biomart comparison of the zebrafish and mouse genomes. Our previously published RNA-seq-based transcriptome datasets of isolated inner ear zebrafish nsSCs and HCs, and mouse non-sensory supporting pillar and Deiters’ cells, and HCs, were merged to analyze gene expression patterns between the two species. Out of 17,498 total orthologs, 11,752 were expressed in zebrafish nsSCs and over 10,000 orthologs were expressed in mouse pillar and Deiters’ cells. Differentially expressed genes common among the zebrafish nsSCs and mouse pillar and Deiters’ cells, compared to species-specific HCs, included 306 downregulated and 314 upregulated genes; however, over 1,500 genes were uniquely upregulated in zebrafish nsSCs. Functional analysis of genes uniquely expressed in nsSCs identified several transcription factors associated with cell fate determination, cell differentiation and nervous system development, indicating inherent molecular properties of nsSCs that promote self-renewal and transdifferentiation into new HCs. Our study provides a means of characterizing these orthologous genes, involved in proliferation and transdifferentiation of nsSCs to HCs in zebrafish, which may lead to identification of potential targets for HC regeneration in mammals.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The zebrafish reference genome sequence and its relationship to the human genome.

            Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Orthologs, paralogs, and evolutionary genomics.

              Orthologs and paralogs are two fundamentally different types of homologous genes that evolved, respectively, by vertical descent from a single ancestral gene and by duplication. Orthology and paralogy are key concepts of evolutionary genomics. A clear distinction between orthologs and paralogs is critical for the construction of a robust evolutionary classification of genes and reliable functional annotation of newly sequenced genomes. Genome comparisons show that orthologous relationships with genes from taxonomically distant species can be established for the majority of the genes from each sequenced genome. This review examines in depth the definitions and subtypes of orthologs and paralogs, outlines the principal methodological approaches employed for identification of orthology and paralogy, and considers evolutionary and functional implications of these concepts.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                18 October 2019
                2019
                : 13
                : 1117
                Affiliations
                Department of Biomedical Sciences, Creighton University School of Medicine , Omaha, NE, United States
                Author notes

                Edited by: Ioannis Dragatsis, The University of Tennessee Health Science Center (UTHSC), United States

                Reviewed by: Brian McDermott, Case Western Reserve University, United States; Tatjana Piotrowski, Stowers Institute for Medical Research, United States

                *Correspondence: Kimberlee P. Giffen, kimgiffen@ 123456creighton.edu

                This article was submitted to Neurogenomics, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2019.01117
                6813431
                31680844
                314e12e0-b059-4eb1-8897-23ab42f1ddd4
                Copyright © 2019 Giffen, Liu, Kramer and He.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 July 2019
                : 03 October 2019
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 86, Pages: 18, Words: 0
                Categories
                Neuroscience
                Original Research

                Neurosciences
                ortholog analysis,protein-coding genes,inner ear,supporting cells,hair cell regeneration,zebrafish,mouse

                Comments

                Comment on this article