Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IRRELEVANT FEATURE AND RULE REMOVAL FOR STRUCTURAL ASSOCIATIVE CLASSIFICATION

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the classification task, the presence of irrelevant features can significantly degrade the performance of classification algorithms, in terms of additional processing time, more complex models and the likelihood that the models have poor generalization power due to the over fitting problem. Practical applications of association rule mining often suffer from overwhelming number of rules that are generated, many of which are not interesting or not useful for the application in question. Removing rules comprised of irrelevant features can signifi cantly improve the overall performance. In this paper, we explore and compare the use of a feature selection measure to filter out unnecessary and irrelevant features/attributes prior to association rules generation. The experiments are performed using a number of real-world datasets that represent diverse characteristics of data items. Empirical results confirm that by utilizing feature subset selection prior to association rule generation, a large number of rules with irrelevant features can be eliminated. More importantly, the results reveal that removing rules that hold irrelevant features improve the accuracy rate and capability to retain the rule coverage rate of structural associative association.  

          Related collections

          Author and article information

          Contributors
          Malaysia
          Malaysia
          Journal
          Journal of Information and Communication Technology
          UUM Press
          April 28 2015
          : 14
          : 95-110
          Affiliations
          [1 ]School of Quantitative Sciences, Universiti Utara Malaysia, Malaysia
          Article
          8158
          10.32890/jict2015.14.0.8158

          All content is freely available without charge to users or their institutions. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission of the publisher or the author. Articles published in the journal are distributed under a http://creativecommons.org/licenses/by/4.0/.

          Comments

          Comment on this article