+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pituitary Adenylate Cyclase-Activating Polypeptide Protects Glomerular Podocytes from Inflammatory Injuries

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Diabetic nephropathy (DN) is a leading cause of end-stage kidney disease; however, there are few treatment options. Inflammation plays a crucial role in the initiation and/or progression of DN. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide, which was originally isolated from the ovine hypothalamus and reportedly has diverse biological functions. It has been reported that PACAP has renoprotective effects in different models of kidney pathology. However, the specific cell types within the kidney that are protected by PACAP have not yet been reported. In this study, we localized VPAC1, one of the PACAP receptors, to glomerular podocytes, which also reportedly has crucial roles not only in glomerular physiology but also in pathology. PACAP was effective in the downregulation of proinflammatory cytokines, such as monocyte chemoattractant protein-1 (MCP-1) and interleukin-6, which had been induced by the activation of toll-like receptor (TLR) with lipopolysaccharide. PACAP also had downregulated the expression of MCP-1 through the protein kinase A signaling pathway; this led to the attenuation of the activation of extracellular signal-regulated kinase and nuclear factor-kappa B signaling. Our results suggested that PACAP could be a possible treatment option for DN through the use of anti-inflammation effects on glomerular podocytes.

          Related collections

          Most cited references 31

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells.

          A novel neuropeptide which stimulates adenylate cyclase in rat anterior pituitary cell cultures was isolated from ovine hypothalamic tissues. Its amino acid sequence was revealed as: His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Lys-Gln- Met-Ala- Val-Lys-Lys-Tyr-Leu-Ala-Ala-Val-Leu-Gly-Lys-Arg-Tyr-Lys-Gln-Arg-Val-Lys-Asn-Lys - NH2. The N-terminal sequence shows 68% homology with vasoactive intestinal polypeptide (VIP) but its adenylate cyclase stimulating activity was at least 1000 times greater than that of VIP. It increased release of growth hormone (GH), prolactin (PRL), corticotropin (ACTH) and luteinizing hormone (LH) from superfused rat pituitary cells at as small a dose as 10(-10)M (GH, PRL, ACTH) or 10(-9)M (LH). Whether these hypophysiotropic effects are the primary actions of the peptide or what physiological action in the pituitary is linked with the stimulation of adenylate cyclase by this peptide remains to be determined.
            • Record: found
            • Abstract: found
            • Article: not found

            A new method for large scale isolation of kidney glomeruli from mice.

            Here we report a new isolation method for mouse glomeruli. The method is fast and simple and allows for the isolation of virtually all glomeruli present in the adult mouse kidney with minimal contamination of nonglomerular cells. Mice were perfused through the heart with magnetic 4.5- micro m diameter Dynabeads. Kidneys were minced into small pieces, digested by collagenase, filtered, and collected using a magnet. The number of glomeruli retrieved from one adult mouse was 20,131 +/- 4699 (mean +/- SD, n = 14) with a purity of 97.5 +/- 1.7%. The isolated glomeruli retained intact morphology, as confirmed by light and electron microscopy, as well as intact mRNA integrity, as confirmed by Northern blot analysis. The method was applicable also to newborn mice, which allows for the isolation of immature developmental stage glomeruli. This method makes feasible transcript profiling and proteomic analysis of the developing, healthy and diseased mouse glomerulus.
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of B7-1 in podocytes is associated with nephrotic syndrome.

              Kidney podocytes and their slit diaphragms form the final barrier to urinary protein loss. This explains why podocyte injury is typically associated with nephrotic syndrome. The present study uncovered an unanticipated novel role for costimulatory molecule B7-1 in podocytes as an inducible modifier of glomerular permselectivity. B7-1 in podocytes was found in genetic, drug-induced, immune-mediated, and bacterial toxin-induced experimental kidney diseases with nephrotic syndrome. The clinical significance of our results is underscored by the observation that podocyte expression of B7-1 correlated with the severity of human lupus nephritis. In vivo, exposure to low-dose LPS rapidly upregulates B7-1 in podocytes of WT and SCID mice, leading to nephrotic-range proteinuria. Mice lacking B7-1 are protected from LPS-induced nephrotic syndrome, suggesting a link between podocyte B7-1 expression and proteinuria. LPS signaling through toll-like receptor-4 reorganized the podocyte actin cytoskeleton in vitro, and activation of B7-1 in cultured podocytes led to reorganization of vital slit diaphragm proteins. In summary, upregulation of B7-1 in podocytes may contribute to the pathogenesis of proteinuria by disrupting the glomerular filter and provides a novel molecular target to tackle proteinuric kidney diseases. Our findings suggest a novel function for B7-1 in danger signaling by nonimmune cells.

                Author and article information

                J Diabetes Res
                J Diabetes Res
                Journal of Diabetes Research
                Hindawi Publishing Corporation
                2 March 2015
                : 2015
                1Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
                2Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
                Author notes

                Academic Editor: Toshiyasu Sasaoka

                Copyright © 2015 Kenichi Sakamoto et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Research Article


                Comment on this article