13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distribution of Posterior Corneal Astigmatism According to Axis Orientation of Anterior Corneal Astigmatism

      research-article
      * , ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To investigate the distribution of posterior corneal astigmatism in eyes with with-the-rule (WTR) and against-the-rule (ATR) anterior corneal astigmatism.

          Methods

          We retrospectively examined six hundred eight eyes of 608 healthy subjects (275 men and 333 women; mean age ± standard deviation, 55.3 ± 20.2 years). The magnitude and axis orientation of anterior and posterior corneal astigmatism were determined with a rotating Scheimpflug system (Pentacam HR, Oculus) when we divided the subjects into WTR and ATR anterior corneal astigmatism groups.

          Results

          The mean magnitudes of anterior and posterior corneal astigmatism were 1.14 ± 0.76 diopters (D), and 0.37 ± 0.19 D, respectively. We found a significant correlation between the magnitudes of anterior and posterior corneal astigmatism (Pearson correlation coefficient r = 0.4739, P<0.001). In the WTR anterior astigmatism group, we found ATR astigmatism of the posterior corneal surface in 402 eyes (96.6%). In the ATR anterior astigmatism group, we found ATR posterior corneal astigmatism in 82 eyes (73.9%). Especially in eyes with ATR anterior corneal astigmatism of 1 D or more and 1.5 D or more, ATR posterior corneal astigmatism was found in 28 eyes (59.6%) and 9 eyes (42.9%), respectively.

          Conclusions

          WTR anterior astigmatism and ATR posterior astigmatism were found in approximately 68% and 91% of eyes, respectively. The magnitude and the axis orientation of posterior corneal astigmatism were not constant, especially in eyes having high ATR anterior corneal astigmatism, as is often the case in patients who have undergone toric IOL implantation.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical methods for assessing agreement between two methods of clinical measurement.

          In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old. Such investigations are often analysed inappropriately, notably by using correlation coefficients. The use of correlation is misleading. An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contribution of posterior corneal astigmatism to total corneal astigmatism.

            To determine the contribution of posterior corneal astigmatism to total corneal astigmatism and the error in estimating total corneal astigmatism from anterior corneal measurements only using a dual-Scheimpflug analyzer. Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA. Case series. Total corneal astigmatism was calculated using ray tracing, corneal astigmatism from simulated keratometry, anterior corneal astigmatism, and posterior corneal astigmatism, and the changes with age were analyzed. Vector analysis was used to assess the error produced by estimating total corneal astigmatism from anterior corneal measurements only. The study analyzed 715 corneas of 435 consecutive patients. The mean magnitude of posterior corneal astigmatism was -0.30 diopter (D). The steep corneal meridian was aligned vertically (60 to 120 degrees) in 51.9% of eyes for the anterior surface and in 86.6% for the posterior surface. With increasing age, the steep anterior corneal meridian tended to change from vertical to horizontal, while the steep posterior corneal meridian did not change. The magnitudes of anterior and posterior corneal astigmatism were correlated when the steeper anterior meridian was aligned vertically but not when it was aligned horizontally. Anterior corneal measurements underestimated total corneal astigmatism by 0.22 @ 180 and exceeded 0.50 D in 5% of eyes. Ignoring posterior corneal astigmatism may yield incorrect estimation of total corneal astigmatism. Selecting toric intraocular lenses based on anterior corneal measurements could lead to overcorrection in eyes that have with-the-rule astigmatism and undercorrection in eyes that have against-the-rule astigmatism. The authors received research support from Ziemer Group. In addition, Dr. Koch has a financial interest with Alcon Laboratories, Inc., Abbott Medical Optics, Inc., Calhoun Vision, Inc., NuLens, and Optimedica Corp. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correcting astigmatism with toric intraocular lenses: effect of posterior corneal astigmatism.

              To evaluate the impact of posterior corneal astigmatism on outcomes with toric intraocular lenses (IOLs). Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA. Case series. Corneal astigmatism was measured using 5 devices before and 3 weeks after cataract surgery. Toric IOL alignment was recorded at surgery and at the slitlamp 3 weeks postoperatively. The actual corneal astigmatism was calculated based on refractive astigmatism 3 weeks postoperatively and the effective toric power calculated with the Holladay 2 formula. The prediction error was calculated as the difference between the astigmatism measured by each device and the actual corneal astigmatism. Vector analysis was used in all calculations. With the IOLMaster, Lenstar, Atlas, manual keratometer, and Galilei (combined Placido-dual Scheimpflug analyzer), the mean prediction errors (D) were, respectively, 0.59 @ 89.7, 0.48 @ 91.2, 0.51 @ 78.7, 0.62 @ 97.2, and 0.57 @ 93.9 for with-the-rule (WTR) astigmatism (60 to 120 degrees), and 0.17 @ 86.2, 0.23 @ 77.7, 0.23 @ 91.4, 0.41 @ 58.4, and 0.12 @ 7.3 for against-the-rule (ATR) astigmatism (0 to 30 degrees and 150 to 180 degrees). In the WTR eyes, there were significant WTR prediction errors (0.5 to 0.6 diopters [D]) by all devices. In ATR eyes, WTR prediction errors were 0.2 to 0.3 D by all devices except the Placido-dual Scheimpflug analyzer (all P<.05 with Bonferroni correction). Corneal astigmatism was overestimated in WTR by all devices and underestimated in ATR by all except the Placido-dual Scheimpflug analyzer. A new toric IOL nomogram is proposed. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2015
                27 January 2015
                : 10
                : 1
                : e0117194
                Affiliations
                [001]Department of Ophthalmology, University of Kitasato School of Medicine, Kanagawa, Japan
                Medical College of Soochow University, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TM KK KS. Performed the experiments: TM KK. Analyzed the data: TM KK. Contributed reagents/materials/analysis tools: TM KK KS. Wrote the paper: TM KK.

                Article
                PONE-D-14-45716
                10.1371/journal.pone.0117194
                4307987
                25625283
                3156dbc8-8865-41a9-ad30-4f8e8593eadd
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 11 October 2014
                : 21 December 2014
                Page count
                Figures: 7, Tables: 2, Pages: 10
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article