17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autophagy dysfunction is implicated in the pathogenesis of Parkinson disease (PD). BECN1/Beclin 1 acts as a critical regulator of autophagy and other cellular processes; yet, little is known about the function and regulation of BECN1 in PD. In this study, we report that dopamine D2 and D3 receptor (DRD2 and DRD3) activation by pramipexole and quinpirole could enhance BECN1 transcription and promote autophagy activation in several cell lines, including PC12, MES23.5 and differentiated SH-SY5Y cells, and also in tyrosine hydroxylase positive primary midbrain neurons. Moreover, we identified a novel FOS (FBJ murine osteosarcoma viral oncogene homolog) binding sequence (5′-TGCCTCA-3′) in the rat and human Becn1/ BECN1 promoter and uncovered an essential role of FOS binding in the enhancement of Becn1 transcription in PC12 cells in response to the dopamine agonist(s). In addition, we demonstrated a critical role of intracellular Ca 2+ elevation, followed by the enhanced phosphorylation of CAMK4 (calcium/calmodulin-dependent protein kinase IV) and CREB (cAMP responsive element binding protein) in the increases of FOS expression and autophagy activity. More importantly, pramipexole treatment ameliorated the SNCA/α-synuclein accumulation in rotenone-treated PC12 cells that overexpress wild-type or A53T mutant SNCA by promoting autophagy flux. This effect was also demonstrated in the substantia nigra and the striatum of SNCA A53T transgenic mice. The inhibition of SNCA accumulation by pramipexole was attenuated by cotreatment with the DRD2 and DRD3 antagonists and Becn1 siRNAs. Thus, our findings suggest that DRD2 and DRD3 agonist(s) may induce autophagy activation via a BECN1-dependent pathway and have the potential to reduce SNCA accumulation in PD.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular strategies for controlling protein aggregation.

          The aggregation of misfolded proteins is associated with the perturbation of cellular function, ageing and various human disorders. Mounting evidence suggests that protein aggregation is often part of the cellular response to an imbalanced protein homeostasis rather than an unspecific and uncontrolled dead-end pathway. It is a regulated process in cells from bacteria to humans, leading to the deposition of aggregates at specific sites. The sequestration of misfolded proteins in such a way is protective for cell function as it allows for their efficient solubilization and refolding or degradation by components of the protein quality-control network. The organized aggregation of misfolded proteins might also allow their asymmetric distribution to daughter cells during cell division.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases.

            Accumulation of the synaptic protein alpha-synuclein (alpha-syn) is a hallmark of Parkinson's disease (PD) and Lewy body disease (LBD), a heterogeneous group of disorders with dementia and parkinsonism, where Alzheimer's disease and PD interact. Accumulation of alpha-syn in these patients might be associated with alterations in the autophagy pathway. Therefore, we postulate that delivery of beclin 1, a regulator of the autophagy pathway, might constitute a strategy toward developing a therapy for LBD/PD. Overexpression of alpha-syn from lentivirus transduction in a neuronal cell line resulted in lysosomal accumulation and alterations in autophagy. Coexpression of beclin 1 activated autophagy, reduced accumulation of alpha-syn, and ameliorated associated neuritic alterations. The effects of beclin 1 overexpression on LC3 and alpha-syn accumulation were partially blocked by 3-MA and completely blocked by bafilomycin A1. In contrast, rapamycin enhanced the effects of beclin 1. To evaluate the potential effects of activating autophagy in vivo, a lentivirus expressing beclin 1 was delivered to the brain of a alpha-syn transgenic mouse. Neuropathological analysis demonstrated that beclin 1 injections ameliorated the synaptic and dendritic pathology in the tg mice and reduced the accumulation of alpha-syn in the limbic system without any significant deleterious effects. This was accompanied by enhanced lysosomal activation and reduced alterations in the autophagy pathway. Thus, beclin 1 plays an important role in the intracellular degradation of alpha-syn either directly or indirectly through the autophagy pathway and may present a novel therapeutic target for LBD/PD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson's disease-type pathology.

              We describe the clinical, neuropathological, and genetic features of a Finnish patient with a novel α-synuclein (SNCA) mutation A53E. The patient was clinically diagnosed with atypical Parkinson's disease (PD) with age of onset at 36 years. In the neuropathological analysis performed at the age of 60 years, highly abundant SNCA pathology was observed throughout the brain and spinal cord showing features of multiple system atrophy and PD. Neuronal and glial (including oligodendroglial) SNCA inclusions and neurites were found to be particularly prominent in the putamen, caudatus, amygdala, temporal and insular cortices, gyrus cinguli, and hippocampus CA2-3 region. These areas as well as the substantia nigra and locus coeruleus showed neuronal loss and gliosis. We also found TDP-43 positive but mostly SNCA negative perinuclear inclusions in the dentate fascia of the hippocampus. The A53E mutation was found in 2 other relatives who had parkinsonism. Our results suggest that the novel SNCA A53E substitution is a causative mutation resulting clinically in parkinsonism and pathologically in severe multiple system atrophy- and PD-type phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Autophagy
                Autophagy
                KAUP
                Autophagy
                Taylor & Francis
                1554-8627
                1554-8635
                November 2015
                9 December 2015
                9 December 2015
                : 11
                : 11
                : 2057-2073
                Affiliations
                [1 ]Department of Neurology; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University ; Suzhou, China
                [2 ]Institute of Neuroscience; Soochow University ; Suzhou, China
                [3 ]Department of Pediatrics; Second Affiliated Hospital; School of Medicine, Zhejiang University ; Hangzhou, Zhejiang, China
                [4 ]Department of Pharmacology; Soochow University; College of Pharmaceutical Sciences ; Suzhou, China
                Author notes
                [* ]Correspondence to: Li-Fang Hu; Email: hulifang@ 123456suda.edu.cn Chun-Feng Liu; Email: liucf@ 123456suda.edu.cn

                †These two authors contributed equally to this work.

                Article
                1100930
                10.1080/15548627.2015.1100930
                4824582
                26649942
                315dfcfa-0296-4488-9176-0af2a9f17ad3
                © 2015 The Author(s). Published with license by Taylor & Francis Group, LLC

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

                History
                : 15 October 2014
                : 8 September 2015
                : 22 September 2015
                Page count
                Figures: 8, Tables: 1, References: 66, Pages: 17
                Categories
                Basic Research Papers

                Molecular biology
                autophagy,becn1,dopamine d2 and d3 receptor,fos,intracellular calcium,snca
                Molecular biology
                autophagy, becn1, dopamine d2 and d3 receptor, fos, intracellular calcium, snca

                Comments

                Comment on this article