21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Core of NGC 6240 from Keck Adaptive Optics and HST NICMOS Observations

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present results of near infrared imaging of the disk-galaxy-merger NGC 6240 using adaptive optics on the Keck II Telescope and reprocessed archival data from NICMOS on the Hubble Space Telescope. Both the North and South nuclei of NGC 6240 are clearly elongated, with considerable sub-structure within each nucleus. In K' band there are at least two point-sources within the North nucleus; we tentatively identify the south-western point-source within the North nucleus as the position of one of the two AGNs. Within the South nucleus, the northern sub-nucleus is more highly reddened. Based upon the nuclear separation measured at 5 GHz, we suggest that the AGN in the South nucleus is still enshrouded in dust at K' band, and is located slightly to the north of the brightest point in K' band. Within the South nucleus there is strong H2 1-0 S(1) line emission from the northern sub-nucleus, contrary to the conclusions of previous seeing-limited observations. Narrowband H2 emission-line images show that a streamer or ribbon of excited molecular hydrogen connects the North and South nuclei. We suggest that this linear feature corresponds to a bridge of gas connecting the two nuclei, as seen in computer simulations of mergers. Many point-like regions are seen around the two nuclei. These are most prominent at 1.1 microns with NICMOS, and in K'-band with Keck adaptive optics. We suggest that these point-sources represent young star clusters formed in the course of the merger.

          Related collections

          Author and article information

          Journal
          19 November 2004
          Article
          10.1086/427546
          astro-ph/0411590
          31644966-a040-4ecb-b155-fa620a5b362e
          History
          Custom metadata
          UCRL-JRNL-2050605.rev1
          Astrophys.J. 621 (2005) 738-749
          50 pages, 13 figures. To be published in the Astrophysical Journal, March 10, 2005
          astro-ph

          Comments

          Comment on this article