9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Comparative anatomy of the bony labyrinth of extant and extinct porpoises (Cetacea: Phocoenidae)

      , , ,
      Biological Journal of the Linnean Society
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Divergence date estimation and a comprehensive molecular tree of extant cetaceans.

          Cetaceans are remarkable among mammals for their numerous adaptations to an entirely aquatic existence, yet many aspects of their phylogeny remain unresolved. Here we merged 37 new sequences from the nuclear genes RAG1 and PRM1 with most published molecular data for the group (45 nuclear loci, transposons, mitochondrial genomes), and generated a supermatrix consisting of 42,335 characters. The great majority of these data have never been combined. Model-based analyses of the supermatrix produced a solid, consistent phylogenetic hypothesis for 87 cetacean species. Bayesian analyses corroborated odontocete (toothed whale) monophyly, stabilized basal odontocete relationships, and completely resolved branching events within Mysticeti (baleen whales) as well as the problematic speciose clade Delphinidae (oceanic dolphins). Only limited conflicts relative to maximum likelihood results were recorded, and discrepancies found in parsimony trees were very weakly supported. We utilized the Bayesian supermatrix tree to estimate divergence dates among lineages using relaxed-clock methods. Divergence estimates revealed rapid branching of basal odontocete lineages near the Eocene-Oligocene boundary, the antiquity of river dolphin lineages, a Late Miocene radiation of balaenopteroid mysticetes, and a recent rapid radiation of Delphinidae beginning approximately 10 million years ago. Our comprehensive, time-calibrated tree provides a powerful evolutionary tool for broad-scale comparative studies of Cetacea.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The primate semicircular canal system and locomotion.

            The semicircular canal system of vertebrates helps coordinate body movements, including stabilization of gaze during locomotion. Quantitative phylogenetically informed analysis of the radius of curvature of the three semicircular canals in 91 extant and recently extinct primate species and 119 other mammalian taxa provide support for the hypothesis that canal size varies in relation to the jerkiness of head motion during locomotion. Primate and other mammalian species studied here that are agile and have fast, jerky locomotion have significantly larger canals relative to body mass than those that move more cautiously.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental Mammals

              Background Variation is a naturally occurring phenomenon that is observable at all levels of morphology, from anatomical variations of DNA molecules to gross variations between whole organisms. The structure of the otic region is no exception. The present paper documents the broad morphological diversity exhibited by the inner ear region of placental mammals using digital endocasts constructed from high-resolution X-ray computed tomography (CT). Descriptions cover the major placental clades, and linear, angular, and volumetric dimensions are reported. Principal Findings The size of the labyrinth is correlated to the overall body mass of individuals, such that large bodied mammals have absolutely larger labyrinths. The ratio between the average arc radius of curvature of the three semicircular canals and body mass of aquatic species is substantially lower than the ratios of related terrestrial taxa, and the volume percentage of the vestibular apparatus of aquatic mammals tends to be less than that calculated for terrestrial species. Aspects of the bony labyrinth are phylogenetically informative, including vestibular reduction in Cetacea, a tall cochlear spiral in caviomorph rodents, a low position of the plane of the lateral semicircular canal compared to the posterior canal in Cetacea and Carnivora, and a low cochlear aspect ratio in Primatomorpha. Significance The morphological descriptions that are presented add a broad baseline of anatomy of the inner ear across many placental mammal clades, for many of which the structure of the bony labyrinth is largely unknown. The data included here complement the growing body of literature on the physiological and phylogenetic significance of bony labyrinth structures in mammals, and they serve as a source of data for future studies on the evolution and function of the vertebrate ear.
                Bookmark

                Author and article information

                Journal
                Biological Journal of the Linnean Society
                Biol. J. Linn. Soc.
                Wiley-Blackwell
                00244066
                December 2016
                December 2016
                : 119
                : 4
                : 831-846
                Article
                10.1111/bij.12857
                31758ecc-ae17-422d-a80b-677e41304647
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article