13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leishmaniasis revisited: Current aspects on epidemiology, diagnosis and treatment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leishmaniasis is a vector-borne disease caused by protozoan parasites of the genus Leishmania. It is transmitted by phlebotomine female sand flies of the genera Phlebotomus and Lutzomyia in the old and new world, respectively. More than 20 well-recognized Leishmania species are known to infect humans and cause visceral (VL), cutaneous (CL) and mucocutaneous (ML) forms of the disease. Approximately 350 million people are at risk of contracting the disease and an estimated 1.6 million new cases occur annually. The disease mainly affects poor people in Africa, Asia and Latin America, and is associated with malnutrition, population migration, poor residency conditions, frail immune system and lack of resources. Previously, diagnosis of leishmaniasis relied mainly on invasive techniques of detecting parasites in splenic and bone marrow aspirates. Nevertheless, serological tests using the recombinant kinesin antigen (rK39) and molecular methods (polymerase chain reaction) are considered the best options for diagnosis today, despite problems related to varying sensitivities and specificities and field adaptability. Therapy of leishmaniasis ranges from local treatment of cutaneous lesions to systemic often toxic, therapy for disseminated CL, ML and VL. Agents with efficacy against leishmaniasis include amphotericin B, pentavalent antimonial drugs, paromomycin and miltefosine. No single therapy of VL currently offers satisfactory efficacy along with safety. This article provides a brief and updated systematic review on the epidemiology, diagnosis and treatment of this neglected disease.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          The relationship between leishmaniasis and AIDS: the second 10 years.

          To date, most Leishmania and human immunodeficiency virus (HIV) coinfection cases reported to WHO come from Southern Europe. Up to the year 2001, nearly 2,000 cases of coinfection were identified, of which 90% were from Spain, Italy, France, and Portugal. However, these figures are misleading because they do not account for the large proportion of cases in many African and Asian countries that are missed due to a lack of diagnostic facilities and poor reporting systems. Most cases of coinfection in the Americas are reported in Brazil, where the incidence of leishmaniasis has spread in recent years due to overlap with major areas of HIV transmission. In some areas of Africa, the number of coinfection cases has increased dramatically due to social phenomena such as mass migration and wars. In northwest Ethiopia, up to 30% of all visceral leishmaniasis patients are also infected with HIV. In Asia, coinfections are increasingly being reported in India, which also has the highest global burden of leishmaniasis and a high rate of resistance to antimonial drugs. Based on the previous experience of 20 years of coinfection in Europe, this review focuses on the management of Leishmania-HIV-coinfected patients in low-income countries where leishmaniasis is endemic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global Change and Human Vulnerability to Vector-Borne Diseases

            Global change includes climate change and climate variability, land use, water storage and irrigation, human population growth and urbanization, trade and travel, and chemical pollution. Impacts on vector-borne diseases, including malaria, dengue fever, infections by other arboviruses, schistosomiasis, trypanosomiasis, onchocerciasis, and leishmaniasis are reviewed. While climate change is global in nature and poses unknown future risks to humans and natural ecosystems, other local changes are occurring more rapidly on a global scale and are having significant effects on vector-borne diseases. History is invaluable as a pointer to future risks, but direct extrapolation is no longer possible because the climate is changing. Researchers are therefore embracing computer simulation models and global change scenarios to explore the risks. Credible ranking of the extent to which different vector-borne diseases will be affected awaits a rigorous analysis. Adaptation to the changes is threatened by the ongoing loss of drugs and pesticides due to the selection of resistant strains of pathogens and vectors. The vulnerability of communities to the changes in impacts depends on their adaptive capacity, which requires both appropriate technology and responsive public health systems. The availability of resources in turn depends on social stability, economic wealth, and priority allocation of resources to public health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amphotericin B formulations: a comparative review of efficacy and toxicity.

              Because of the increasing prevalence and changing microbiological spectrum of invasive fungal infections, some form of amphotericin B still provides the most reliable and broad spectrum therapeutic alternative. However, the use of amphotericin B deoxycholate is accompanied by dose-limited toxicities, most importantly, infusion-related reactions and nephrotoxicity. In an attempt to improve the therapeutic index of amphotericin B, three lipid-associated formulations were developed, including amphotericin B lipid complex (ABLC), liposomal amphotericin B (L-AmB), and amphotericin B colloidal dispersion (ABCD). The lipid composition of all three of these preparations differs considerably and contributes to substantially different pharmacokinetic parameters. ABLC is the largest of the lipid preparations. Because of its size, it is taken up rapidly by macrophages and becomes sequestered in tissues of the mononuclear phagocyte system such as the liver and spleen. Consequently, compared with the conventional formulation, it has lower circulating amphotericin B serum concentrations, reflected in a marked increase in volume of distribution and clearance. Lung levels are considerably higher than those achieved with other lipid-associated preparations. The recommended therapeutic dose of ABLC is 5 mg/kg/day. Because of its small size and negative charge, L-AmB avoids substantial recognition and uptake by the mononuclear phagocyte system. Therefore, a single dose of L-AmB results in a much higher peak plasma level (Cmax) than conventional amphotericin B deoxycholate and a much larger area under the concentration-time curve. Tissue concentrations in patients receiving L-AmB tend to be highest in the liver and spleen and much lower in kidneys and lung. Recommended therapeutic dosages are 3-6 mg/kg/day. After intravenous infusion, ABCD complexes remain largely intact and are rapidly removed from the circulation by cells of the macrophage phagocyte system. On a milligram-to-milligram basis, the Cmax achieved is lower than that attained by conventional amphotericin B, although the larger doses of ABCD that are administered produce an absolute level that is similar to amphotericin B. ABCD exhibits dose-limiting, infusion-related toxicities; consequently, the administered dosages should not exceed 3-4 mg/kg/day. The few comparative clinical trials that have been completed with the lipid-associated formulations have not demonstrated important clinical differences among these agents and amphotericin B for efficacy, although there are significant safety benefits of the lipid products. Furthermore, only one published trial has ever compared one lipid product against another for any indication. The results of these trials are particularly difficult to interpret because of major heterogeneities in study design, disease definitions, drug dosages, differences in clinical and microbiological endpoints as well as specific outcomes examined. Nevertheless, it is possible to derive some general conclusions given the available data. The most commonly studied syndrome has been empiric therapy for febrile neutropenic patients, where the lipid-associated preparations did not appear to provide a survival benefit over conventional amphotericin B deoxycholate, but did offer a significant advantage for the prevention of various breakthrough invasive fungal infections. For treatment of documented invasive fungal infections that usually involved hematological malignancy patients, no individual randomized trial has demonstrated a mortality benefit due to therapy with one of the lipid formulations. Results from meta-analyses have been contradictory, with one demonstrating a mortality benefit from all-cause mortality and one that did not demonstrate a mortality benefit. In the only published study to examine HIV-infected patients with disseminated histoplasmosis, clinical success and mortality were significantly better with L-AmB compared with amphotericin B deoxycholate; there were no differences in microbiological outcomes between treatment groups. The lipid-associated preparations were not significantly better than amphotericin B deoxycholate for treatment of AIDS-associated acute cryptococcal meningitis for either clinical or microbiological outcomes that were studied. In all of the trials that specifically examined renal toxicity, the lipid-associated formulations were significantly less nephrotoxic than amphotericin B deoxycholate. Infusion-related reactions occurred less frequently with L-AmB when compared with amphotericin B deoxycholate; however, ABCD had equivalent or more frequent infusion-related reactions than conventional amphotericin B, and this resulted in the cessation of at least one clinical trial. At the present time, this particular lipid formulation is no longer commercially available. For the treatment of most invasive fungal infections, an amphotericin B lipid formulation provides a safer alternative than conventional amphotericin B, with at least equivalent efficacy. As the cost of therapy with these agents continues to decline, these drugs will likely maintain their important role in the antifungal drug armamentarium because of their efficacy and improved safety profile.
                Bookmark

                Author and article information

                Journal
                J Transl Int Med
                J Transl Int Med
                Journal of Translational Internal Medicine
                De Gruyter Open
                2450-131X
                2224-4018
                Apr-Jun 2015
                30 June 2015
                : 3
                : 2
                : 43-50
                Affiliations
                Department of Medicine and Research Laboratory of Internal Medicine, Medical School, University of Thessaly, Larissa, Greece
                Author notes
                Address for Correspondence: Prof. George N. Dalekos, Department of Medicine and Research Laboratory of Internal Medicine, University of Thessaly, School of Medicine, Biopolis, 41110, Larissa, Greece. E-mail: dalekos@ 123456med.uth.gr
                Article
                jtim-2015-0002
                10.1515/jtim-2015-0002
                4936444
                27847886
                317ec888-4bc0-4707-82aa-309d6711585f
                Copyright © International Society of Translational Sciences

                This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License (CC BY-NC-ND 3.0)

                History
                Categories
                Review Article

                cutaneous,diagnosis,epidemiology,leishmaniasis,treatment,visceral

                Comments

                Comment on this article