153
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Prolactin: Structure, Function, and Regulation of Secretion

      1 , 1 , 1 , 1

      Physiological Reviews

      American Physiological Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.

          Related collections

          Most cited references 1,715

          • Record: found
          • Abstract: found
          • Article: not found

          The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.

          Despite its very potent vasodilating action in vivo, acetylcholine (ACh) does not always produce relaxation of isolated preparations of blood vessels in vitro. For example, in the helical strip of the rabbit descending thoracic aorta, the only reported response to ACh has been graded contractions, occurring at concentrations above 0.1 muM and mediated by muscarinic receptors. Recently, we observed that in a ring preparation from the rabbit thoracic aorta, ACh produced marked relaxation at concentrations lower than those required to produce contraction (confirming an earlier report by Jelliffe). In investigating this apparent discrepancy, we discovered that the loss of relaxation of ACh in the case of the strip was the result of unintentional rubbing of its intimal surface against foreign surfaces during its preparation. If care was taken to avoid rubbing of the intimal surface during preparation, the tissue, whether ring, transverse strip or helical strip, always exhibited relaxation to ACh, and the possibility was considered that rubbing of the intimal surface had removed endothelial cells. We demonstrate here that relaxation of isolated preparations of rabbit thoracic aorta and other blood vessels by ACh requires the presence of endothelial cells, and that ACh, acting on muscarinic receptors of these cells, stimulates release of a substance(s) that causes relaxation of the vascular smooth muscle. We propose that this may be one of the principal mechanisms for ACh-induced vasodilation in vivo. Preliminary reports on some aspects of the work have been reported elsewhere.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitric oxide as a secretory product of mammalian cells.

              Evolution has resorted to nitric oxide (NO), a tiny, reactive radical gas, to mediate both servoregulatory and cytotoxic functions. This article reviews how different forms of nitric oxide synthase help confer specificity and diversity on the effects of this remarkable signaling molecule.
                Bookmark

                Author and article information

                Journal
                Physiological Reviews
                Physiological Reviews
                American Physiological Society
                0031-9333
                1522-1210
                January 10 2000
                January 10 2000
                : 80
                : 4
                : 1523-1631
                Affiliations
                [1 ]Department of Biological Science, Florida State University, Tallahassee, Florida; Department of Anatomy, The University of Mississippi Medical Center, Jackson, Mississippi; and Neuroendocrine Research Laboratory, Department of Human Morphology, Semmelweis University School of Medicine, Budapest, Hungary
                Article
                10.1152/physrev.2000.80.4.1523
                11015620
                © 2000

                Comments

                Comment on this article