0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thermoelectricity of Tin Selenide Monolayers Across a Structural Phase Transition

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SnSe monolayers experience a temperature induced two-dimensional Pnm2\(_1 \to\) P4/nmm structural transformation precipitated by the softening of vibrational modes. The standard theoretical treatment of thermoelectricity---which relies on a zero temperature phonon dispersion and on a zero temperature electronic structure---is incapable of describing thermoelectric phenomena induced by structural transformations. Relying on structural data obtained from {\em ab initio} molecular dynamics calculations that is utilized in a non-standard way to inform of electronic and vibrational transport coefficients, the present work establishes a general route to understand thermoelectricity across phase transitions. Similar to recent experimental observations pointing to an overestimated thermoelectric figure of merit \(ZT\) past the transition temperature, our work indicates a smaller \(ZT\) when compared to its value predicted by the standard paradigm. Its decrease is related to the dramatic changes in the electrical conductivity and lattice thermal conductivity as the structural transformation ensues. Though exemplified on a SnSe monolayer, the method does not have any built-in assumptions concerning dimensionality, and thus applicable to arbitrary thermoelectric materials in one, two, and three dimensions.

          Related collections

          Author and article information

          Journal
          12 October 2020
          Article
          2010.05793
          3184304d-2630-401e-aa04-53950854c208

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Originally submitted on May 12, 2020
          cond-mat.mtrl-sci cond-mat.mes-hall

          Condensed matter,Nanophysics
          Condensed matter, Nanophysics

          Comments

          Comment on this article