5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ecological opportunity alters the timing and shape of adaptive radiation : GLOBAL PATTERNS OF CICHLID DIVERSIFICATION

      1 , 2
      Evolution
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Ecological opportunity and the origin of adaptive radiations.

          Ecological opportunity--through entry into a new environment, the origin of a key innovation or extinction of antagonists--is widely thought to link ecological population dynamics to evolutionary diversification. The population-level processes arising from ecological opportunity are well documented under the concept of ecological release. However, there is little consensus as to how these processes promote phenotypic diversification, rapid speciation and adaptive radiation. We propose that ecological opportunity could promote adaptive radiation by generating specific changes to the selective regimes acting on natural populations, both by relaxing effective stabilizing selection and by creating conditions that ultimately generate diversifying selection. We assess theoretical and empirical evidence for these effects of ecological opportunity and review emerging phylogenetic approaches that attempt to detect the signature of ecological opportunity across geological time. Finally, we evaluate the evidence for the evolutionary effects of ecological opportunity in the diversification of Caribbean Anolis lizards. Some of the processes that could link ecological opportunity to adaptive radiation are well documented, but others remain unsupported. We suggest that more study is required to characterize the form of natural selection acting on natural populations and to better describe the relationship between ecological opportunity and speciation rates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            treePL: divergence time estimation using penalized likelihood for large phylogenies.

            Ever larger phylogenies are being constructed due to the explosion of genetic data and development of high-performance phylogenetic reconstruction algorithms. However, most methods for calculating divergence times are limited to datasets that are orders of magnitude smaller than recently published large phylogenies. Here, we present an algorithm and implementation of a divergence time method using penalized likelihood that can handle datasets of thousands of taxa. We implement a method that combines the standard derivative-based optimization with a stochastic simulated annealing approach to overcome optimization challenges. We compare this approach with existing software including r8s, PATHd8 and BEAST. Source code, example files, binaries and documentation for treePL are available at https://github.com/blackrim/treePL.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adaptive radiation, ecological opportunity, and evolutionary determinism. American Society of Naturalists E. O. Wilson award address.

              Adaptive radiation refers to diversification from an ancestral species that produces descendants adapted to use a great variety of distinct ecological niches. In this review, I examine two aspects of adaptive radiation: first, that it results from ecological opportunity and, second, that it is deterministic in terms of its outcome and evolutionary trajectory. Ecological opportunity is usually a prerequisite for adaptive radiation, although in some cases, radiation can occur in the absence of preexisting opportunity. Nonetheless, many clades fail to radiate although seemingly in the presence of ecological opportunity; until methods are developed to identify and quantify ecological opportunity, the concept will have little predictive utility in understanding a priori when a clade might be expected to radiate. Although predicted by theory, replicated adaptive radiations occur only rarely, usually in closely related and poorly dispersing taxa found in the same region on islands or in lakes. Contingencies of a variety of types may usually preclude close similarity in the outcome of evolutionary diversification in other situations. Whether radiations usually unfold in the same general sequence is unclear because of the unreliability of methods requiring phylogenetic reconstruction of ancestral events. The synthesis of ecological, phylogenetic, experimental, and genomic advances promises to make the coming years a golden age for the study of adaptive radiation; natural history data, however, will always be crucial to understanding the forces shaping adaptation and evolutionary diversification.
                Bookmark

                Author and article information

                Journal
                Evolution
                Evolution
                Wiley
                00143820
                November 2017
                November 2017
                October 04 2017
                : 71
                : 11
                : 2650-2660
                Affiliations
                [1 ]Department of Biological Sciences and Auburn University Museum of Natural History; Auburn University; Auburn Alabama
                [2 ]Division of Infectious Diseases, School of Medicine; Emory University; Atlanta Georgia
                Article
                10.1111/evo.13362
                28895124
                318719ae-b610-4209-8c29-3d16969e81d8
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article