81
views
1
recommends
+1 Recommend
1 collections
    9
    shares
      • Record: found
      • Abstract: found
      • Article: found

      GABAA receptor subtypes: Therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism.

      1 ,

      Annual review of pharmacology and toxicology

      Annual Reviews

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The γ-aminobutyric acid (GABA) system plays a pivotal role in orchestrating the synchronicity of local networks and the functional coupling of different brain regions. Here we review the impact of the GABAA receptor subtypes on cognitive and emotional behavior, paying particular attention to five disease states: cognitive dysfunction and Down syndrome, anxiety disorders, depression, schizophrenia, and autism. Through the bidirectional modulation of tonic inhibition, α5-subunit-containing GABAA receptors permit the bidirectional modulation of cognitive processes, and a partial inverse agonist acting at the α5-subunit-containing GABAA receptor is in a clinical trial in individuals with Down syndrome. With regard to anxiety disorders, the viability of nonsedative anxiolytics based on the modulation of α2- and α3-subunit-containing GABAA receptors has been established in clinical proof-of-concept trials. Regarding the remaining three disease states, the GABA hypothesis of depression offers new options for antidepressant drug development; cognitive symptoms in schizophrenia are attributed to a cortical GABAergic deficit, and dysfunctional GABAergic inhibition is increasingly understood to contribute to the pathophysiology of autism spectrum disorders.

          Related collections

          Most cited references 112

          • Record: found
          • Abstract: found
          • Article: not found

          Neocortical excitation/inhibition balance in information processing and social dysfunction.

          Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30-80 Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of gamma oscillations.

            Gamma rhythms are commonly observed in many brain regions during both waking and sleep states, yet their functions and mechanisms remain a matter of debate. Here we review the cellular and synaptic mechanisms underlying gamma oscillations and outline empirical questions and controversial conceptual issues. Our main points are as follows: First, gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition. Second, gamma oscillations are short-lived and typically emerge from the coordinated interaction of excitation and inhibition, which can be detected as local field potentials. Third, gamma rhythm typically concurs with irregular firing of single neurons, and the network frequency of gamma oscillations varies extensively depending on the underlying mechanism. To document gamma oscillations, efforts should be made to distinguish them from mere increases of gamma-band power and/or increased spiking activity. Fourth, the magnitude of gamma oscillation is modulated by slower rhythms. Such cross-frequency coupling may serve to couple active patches of cortical circuits. Because of their ubiquitous nature and strong correlation with the "operational modes" of local circuits, gamma oscillations continue to provide important clues about neuronal population dynamics in health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cortical inhibitory neurons and schizophrenia.

              Impairments in certain cognitive functions, such as working memory, are core features of schizophrenia. Convergent findings indicate that a deficiency in signalling through the TrkB neurotrophin receptor leads to reduced GABA (gamma-aminobutyric acid) synthesis in the parvalbumin-containing subpopulation of inhibitory GABA neurons in the dorsolateral prefrontal cortex of individuals with schizophrenia. Despite both pre- and postsynaptic compensatory responses, the resulting alteration in perisomatic inhibition of pyramidal neurons contributes to a diminished capacity for the gamma-frequency synchronized neuronal activity that is required for working memory function. These findings reveal specific targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia.
                Bookmark

                Author and article information

                Journal
                Annu. Rev. Pharmacol. Toxicol.
                Annual review of pharmacology and toxicology
                Annual Reviews
                1545-4304
                0362-1642
                2014
                : 54
                Affiliations
                [1 ] Laboratory of Genetic Neuropharmacology, McLean Hospital and Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts 02478; email: urudolph@mclean.harvard.edu.
                Article
                NIHMS555230
                10.1146/annurev-pharmtox-011613-135947
                3997216
                24160694
                31871bd3-a6c0-4155-ab53-e913b1477f7c

                Comments

                Comment on this article