14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct HPV E6/Myc interactions induce histone modifications, Pol II phosphorylation, and hTERT promoter activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human Papillomavirus Viruses (HPVs) are associated with the majority of human cervical and anal cancers and 10-30% of head and neck squamous carcinomas. E6 oncoprotein from high risk HPVs interacts with the p53 tumor suppressor protein to facilitate its degradation and increases telomerase activity for extending the life span of host cells. We published previously that the Myc cellular transcription factor associates with the high-risk HPV E6 protein in vivo and participates in the transactivation of the hTERT promoter. In the present study, we further analyzed the role of E6 and the Myc-Max-Mad network in regulating the hTERT promoter. We confirmed that E6 and Myc interact independently and that Max can also form a complex with E6. However, the E6/Max complex is observed only in the presence of Myc, suggesting that E6 associates with Myc/Max dimers. Consistent with the hypothesis that Myc is required for E6 induction of the hTERT promoter, Myc antagonists (Mad or Mnt) significantly blocked E6-mediated transactivation of the hTERT promoter. Analysis of Myc mutants demonstrated that both the transactivation domain and HLH domain of Myc protein were required for binding E6 and for the consequent transactivation of the hTERT promoter, by either Myc or E6. We also showed that E6 increased phosphorylation of Pol II on the hTERT promoter and induced epigenetic histone modifications of the hTERT promoter. More important, knockdown of Myc expression dramatically decreased engagement of acetyl-histones and Pol II at the hTERT promoter in E6-expressing cells. Thus, E6/Myc interaction triggers the transactivation of the hTERT promoter by modulating both histone modifications, Pol II phosphorylation and promoter engagement, suggesting a novel mechanism for telomerase activation and a new target for HPV- associated human cancer.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Direct activation of TERT transcription by c-MYC.

          The MYC proto-oncogene encodes a ubiquitous transcription factor (c-MYC) involved in the control of cell proliferation and differentiation. Deregulated expression of c-MYC caused by gene amplification, retroviral insertion, or chromosomal translocation is associated with tumorigenesis. The function of c-MYC and its role in tumorigenesis are poorly understood because few c-MYC targets have been identified. Here we show that c-MYC has a direct role in induction of the activity of telomerase, the ribonucleoprotein complex expressed in proliferating and transformed cells, in which it preserves chromosome integrity by maintaining telomere length. c-MYC activates telomerase by inducing expression of its catalytic subunit, telomerase reverse transcriptase (TERT). Telomerase complex activity is dependent on TERT, a specialized type of reverse transcriptase. TERT and c-MYC are expressed in normal and transformed proliferating cells, downregulated in quiescent and terminally differentiated cells, and can both induce immortalization when constitutively expressed in transfected cells. Consistent with the recently reported association between MYC overexpression and induction of telomerase activity, we find here that the TERT promoter contains numerous c-MYC-binding sites that mediate TERT transcriptional activation. c-MYC-induced TERT expression is rapid and independent of cell proliferation and additional protein synthesis, consistent with direct transcriptional activation of TERT. Our results indicate that TERT is a target of c-MYC activity and identify a pathway linking cell proliferation and chromosome integrity in normal and neoplastic cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells.

            Normal human cells undergo a limited number of divisions in culture and enter a non-dividing state called replicative senescence. Senescence is accompanied by several changes, including an increase in inhibitors of cyclin-dependent kinases and telomere shortening. The mechanisms by which viral oncogenes reverse these processes are not fully understood, although a general requirement for oncoproteins such as human papillomavirus E6 and E7 has suggested that the p53 and Rb pathways are targeted. Expression of the catalytic component of telomerase, hTERT, alone significantly extends the lifespan of human fibroblasts. Here we show that telomerase activity is not sufficient for immortalization of human keratinocyte or mammary epithelial cells: we find that neither addition of hTERT nor induction of telomerase activity by E6, both of which are active in maintaining telomere length, results in immortalization. Inactivation of the Rb/p16 pathway by E7 or downregulation of p16 expression, in combination with telomerase activity, however, is able to immortalize epithelial cells efficiently. Elimination of p53 and of the DNA-damage-induced G1 checkpoint is not necessary for immortalization, neither is elimination of p19ARF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elongation by RNA polymerase II: the short and long of it.

              Appreciable advances into the process of transcript elongation by RNA polymerase II (RNAP II) have identified this stage as a dynamic and highly regulated step of the transcription cycle. Here, we discuss the many factors that regulate the elongation stage of transcription. Our discussion includes the classical elongation factors that modulate the activity of RNAP II, and the more recently identified factors that facilitate elongation on chromatin templates. Additionally, we discuss the factors that associate with RNAP II, but do not modulate its catalytic activity. Elongation is highlighted as a central process that coordinates multiple stages in mRNA biogenesis and maturation.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                10 November 2017
                25 October 2017
                : 8
                : 56
                : 96323-96339
                Affiliations
                1 Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
                Author notes
                Correspondence to: Xuefeng Liu, xuefeng.liu@ 123456georgetown.edu
                Article
                22036
                10.18632/oncotarget.22036
                5707103
                29221209
                31918149-2f80-4aa3-a121-2beebe710ee2
                Copyright: © 2017 Zhang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 August 2017
                : 15 September 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                telomerase,papillomaviruses,oncoproteins,histones,rna polymerase ii
                Oncology & Radiotherapy
                telomerase, papillomaviruses, oncoproteins, histones, rna polymerase ii

                Comments

                Comment on this article