16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Extraction optimization, total phenolic, flavonoid contents, HPLC-DAD analysis and diverse pharmacological evaluations of Dysphania ambrosioides (L.) Mosyakin & Clemants

      1 , 2 , 3 , 1 , 4 , 1 , 3 , 5
      Natural Product Research
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study aims to evaluate phytochemical and pharmacological potentials of Dysphania ambrosioides (L.) Mosyakin & Clemants previously known as Chenopodium ambrosioides L. Extraction was carried out using 14 solvents with wide range of polarity to find out the best solvent system for each bioactivity. Total phenolic and flavonoids contents were measured colorimetrically and polyphenolics were quantified via HPLC-DAD analysis. The samples were screened for inhibitory potentials against free radicals, leishmania, cancer cell lines, protein kinase, α-Amylase enzymes and microbial strains. Among all solvents, maximum percentage of extract was recovered from methanol-water fraction of leaves. HPLC analysis exhibited the presence of rutin, myricetin and quercetin. In DPPH assay, methanolic leaf extract exhibited IC50 value of 130.7 ± 0.57 μg/mL. Considerable α-amylase inhibitory, cytotoxic, leishmanicidal and antimicrobial potentials were exhibited by plant samples. D. ambrosioides revealed significant antioxidant, cytotoxic, antimicrobial and anti-diabetic potentials and thus warrant further detailed studies to find novel drugs.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies.

          Trypanosomiasis and leishmaniasis are important parasitic diseases affecting millions of people in Africa, Asia, and South America. In a previous study, we identified several flavonoid glycosides as antiprotozoal principles from a Turkish plant. Here we surveyed a large set of flavonoid aglycones and glycosides, as well as a panel of other related compounds of phenolic and phenylpropanoid nature, for their in vitro activities against Trypanosoma brucei rhodesiense, Trypanosoma cruzi, and Leishmania donovani. The cytotoxicities of more than 100 compounds for mammalian L6 cells were also assessed and compared to their antiparasitic activities. Several compounds were investigated in vivo for their antileishmanial and antitrypanosomal efficacies in mouse models. Overall, the best in vitro trypanocidal activity for T. brucei rhodesiense was exerted by 7,8-dihydroxyflavone (50% inhibitory concentration [IC50], 68 ng/ml), followed by 3-hydroxyflavone, rhamnetin, and 7,8,3',4'-tetrahydroxyflavone (IC50s, 0.5 microg/ml) and catechol (IC50, 0.8 microg/ml). The activity against T. cruzi was moderate, and only chrysin dimethylether and 3-hydroxydaidzein had IC50s less than 5.0 microg/ml. The majority of the metabolites tested possessed remarkable leishmanicidal potential. Fisetin, 3-hydroxyflavone, luteolin, and quercetin were the most potent, giving IC50s of 0.6, 0.7, 0.8, and 1.0 microg/ml, respectively. 7,8-Dihydroxyflavone and quercetin appeared to ameliorate parasitic infections in mouse models. Generally, the test compounds lacked cytotoxicity in vitro and in vivo. By screening a large number of flavonoids and analogues, we were able to establish some general trends with respect to the structure-activity relationship, but it was not possible to draw clear and detailed quantitative structure-activity relationships for any of the bioactivities by two different approaches. However, our results can help in directing the rational design of 7,8-dihydroxyflavone and quercetin derivatives as potent and effective antiprotozoal agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants

            The use of essential oils (EOs) and their components is known since long in traditional medicine and aromatherapy for the management of various diseases, and is further increased in the recent times. The neuroprotective and anti-aging potentials of EOs and their possible mechanism of actions were evaluated by numerous researchers around the globe. Several clinically important EOs and their components from Nigella sativa, Acorus gramineus, Lavandula angustifolia, Eucalyptus globulus, Mentha piperita, Rosmarinus officinalis, Jasminum sambac, Piper nigrum and so many other plants are reported for neuroprotective effects. This review article was aimed to summarize the current finding on EOs tested against neurodegenerative disorders like Alzheimer disease (AD) and dementia. The effects of EOs on pathological targets of AD and dementia including amyloid deposition (Aβ), neurofibrillary tangles (NFTs), cholinergic hypofunction, oxidative stress and glutamatergic abnormalities were focused. Furthermore, effects of EOs on other neurological disorders including anxiety, depression, cognitive hypofunction epilepsy and convulsions were also evaluated in detail. In conclusion, EOs were effective on several pathological targets and have improved cognitive performance in animal models and human subjects. Thus, EOs can be developed as multi-potent agents against neurological disorders with better efficacy, safety and cost effectiveness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Anti-Alzheimer’s Studies on β-Sitosterol Isolated from Polygonum hydropiper L.

              The family Polygonaceae is known for its traditional use in the management of various neurological disorders including Alzheimer’s disease (AD). In search of new anti-AD drugs, β-sitosterol isolated from Polygonum hydropiper was subjected to in vitro, in vivo, behavioral and molecular docking studies to confirm its possibility as a potential anti-Alzheimer’s agent. The in vitro AChE, BChE inhibitory potentials of β-sitosterol were investigated following Ellman’s assay. The antioxidant activity was tested using DPPH, ABTS and H2O2 assays. Behavioral studies were performed on a sub-strain of transgenic mice using shallow water maze (SWM), Y-maze and balance beam tests. β-sitosterol was tested for in vivo inhibitory potentials against cholinesterase’s and free radicals in the frontal cortex (FC) and hippocampus (HC). The molecular docking study was performed to predict the binding mode of β-sitosterol in the active sites of AChE and BChE as inhibitor. Considerable in vitro and in vivo cholinesterase inhibitory effects were observed in the β-sitosterol treated groups. β-sitosterol exhibited an IC50 value of 55 and 50 μg/ml against AChE and BChE respectively. Whereas, the activity of these enzymes were significantly low in FC and HC homogenates of transgenic animals. Molecular docking studies also support the binding of β-sitosterol with the target enzyme and further support the in vitro and in vivo results. In the antioxidant assays, the IC50 values were observed as 140, 120, and 280 μg/ml in the DPPH, ABTS and H2O2 assays respectively. The free radicals load in the brain tissues was significantly declined in the β-sitosterol treated animals as compared to the transgenic-saline treated groups. In the memory assessment and coordination tasks including SWM, Y-maze and balance beam tests, β-sitosterol treated transgenic animals showed gradual improvement in working memory, spontaneous alternation behavior and motor coordination. These results conclude that β-sitosterol is a potential compound for the management of memory deficit disorders like AD.
                Bookmark

                Author and article information

                Journal
                Natural Product Research
                Natural Product Research
                Informa UK Limited
                1478-6419
                1478-6427
                February 12 2018
                February 12 2018
                : 1-7
                Affiliations
                [1 ] Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
                [2 ] Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
                [3 ] Department of Eastern Medicine and Surgery, Qarshi University, Lahore, Pakistan
                [4 ] Department of Pharmacy, University of Malakand, Khyber Pakhtoonkhwa, Pakistan
                [5 ] Pakistan Academy of Sciences, Islamabad, Pakistan
                Article
                10.1080/14786419.2018.1437428
                29430965
                319ee9e2-5803-4559-b7af-6706d655887b
                © 2018
                History

                Comments

                Comment on this article