7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current applications and future prospects of nanotechnology in cancer immunotherapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer immunotherapy is an artificial stimulation of the immune system to recognize cancer cells and activate specific immune cells to target and attack cancer cells. In clinical trials, immunotherapy has recently shown impressive results in the treatment of multiple cancers. Thus, cancer immunotherapy has gained a lot of attention for its unique advantages and promising future. With extensive research on cancer immunotherapy, its safety and effectiveness has gradually been revealed. However, it is still a huge challenge to expand and drive this therapy while maintaining low toxicity, high specificity, and long-lasting efficacy. As a unique technology, nanotechnology has been applied in many fields, the advantages of which will promote the development of cancer immunotherapies. Researchers have tried to apply nanomaterials to cancer immunotherapy due to their advantageous properties, such as large specific surface areas, effective drug delivery, and controlled surface chemistry, to improve treatment efficacy. Here, we briefly introduce the current applications of nanomaterials in cancer immunotherapy, including adoptive cell therapy (ACT), therapeutic cancer vaccines, and monoclonal antibodies, and throw light on future directions of nanotechnology-based cancer immunotherapy.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery

          Cell-derived nanoparticles have been garnering increased attention due to their ability to mimic many of the natural properties displayed by their source cells. This top-down engineering approach can be applied toward the development of novel therapeutic strategies owing to the unique interactions enabled through the retention of complex antigenic information. Herein, we report on the biological functionalization of polymeric nanoparticles with a layer of membrane coating derived from cancer cells. The resulting core–shell nanostructures, which carry the full array of cancer cell membrane antigens, offer a robust platform with applicability toward multiple modes of anticancer therapy. We demonstrate that by coupling the particles with an immunological adjuvant, the resulting formulation can be used to promote a tumor-specific immune response for use in vaccine applications. Moreover, we show that by taking advantage of the inherent homotypic binding phenomenon frequently observed among tumor cells the membrane functionalization allows for a unique cancer targeting strategy that can be utilized for drug delivery applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy

            Advanced colorectal cancer is one of the deadliest cancers, with a 5-year survival rate of only 12% for patients with the metastatic disease. Checkpoint inhibitors, such as the antibodies inhibiting the PD-1/PD-L1 axis, are among the most promising immunotherapies for patients with advanced colon cancer, but their durable response rate remains low. We herein report the use of immunogenic nanoparticles to augment the antitumour efficacy of PD-L1 antibody-mediated cancer immunotherapy. Nanoscale coordination polymer (NCP) core-shell nanoparticles carry oxaliplatin in the core and the photosensitizer pyropheophorbide-lipid conjugate (pyrolipid) in the shell (NCP@pyrolipid) for effective chemotherapy and photodynamic therapy (PDT). Synergy between oxaliplatin and pyrolipid-induced PDT kills tumour cells and provokes an immune response, resulting in calreticulin exposure on the cell surface, antitumour vaccination and an abscopal effect. When combined with anti-PD-L1 therapy, NCP@pyrolipid mediates regression of both light-irradiated primary tumours and non-irradiated distant tumours by inducing a strong tumour-specific immune response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas.

              In 1891, William B. Coley injected streptococcal organisms into a patient with inoperable cancer. He thought that the infection he produced would have the side effect of shrinking the malignant tumor. He was successful, and this was one of the first examples of immunotherapy. Over the next forty years, as head of the Bone Tumor Service at Memorial Hospital in New York, Coley injected more than 1000 cancer patients with bacteria or bacterial products. These products became known as Coley's Toxins. He and other doctors who used them reported excellent results, especially in bone and soft-tissue sarcomas. Despite his reported good results, Coley's Toxins came under a great deal of criticism because many doctors did not believe his results. This criticism, along with the development of radiation therapy and chemotherapy, caused Coley's Toxins to gradually disappear from use. However, the modern science of immunology has shown that Coley's principles were correct and that some cancers are sensitive to an enhanced immune system. Because research is very active in this field, William B. Coley, a bone sarcoma surgeon, deserves the title "Father of Immunotherapy".
                Bookmark

                Author and article information

                Contributors
                Journal
                Cancer Biol Med
                Cancer Biol Med
                CBM
                Cancer Biology & Medicine
                Chinese Anti-Cancer Association (Tianjing China )
                2095-3941
                August 2019
                : 16
                : 3
                : 486-497
                Affiliations
                [1 ] State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
                [2 ] Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
                [3 ] Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
                [4 ] Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
                Author notes
                Article
                cbm-16-3-486
                10.20892/j.issn.2095-3941.2018.0493
                6743628
                31565479
                319f7b12-8e9f-404c-a5d3-cce86f078544
                Copyright 2019 Cancer Biology & Medicine

                This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 30 November 2018
                : 30 January 2019
                Categories
                Review

                cancer immunotherapy,nanotechnology,therapeutic cancer vaccine,monoclonal antibody

                Comments

                Comment on this article