Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      PDGF and IL-1β Upregulate Cofilin and LIMK2 in Canine Cultured Pulmonary Artery Smooth Muscle Cells

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Actin cytoskeleton reorganization is regulated by various actin-binding proteins. Cofilin is the principal filament-depolymerizing protein, whose activity is reduced upon phosphorylation by LIMK. Thus, LIMK and cofilin comprise a signal transduction module regulating actin turnover and myogenic tone in healthy vasculature. Novel functions of smooth muscle cells (SMCs) in the hypertensive pulmonary artery, such as increased motility and proliferation, are supported by the actin cytoskeleton. We therefore hypothesized that bioactive peptides that affect these SMC functions may also result in an upregulation of LIMK and cofilin expression. Semiquantitative RT-PCR and immunoblotting indicated that LIMK2 and cofilin mRNA and protein expression is upregulated in canine pulmonary artery SMCs (PASMCs) exposed to PDGF or IL-1β (10 ng/ml). Inhibition of ERK MAPKs (U-0126, 10 µ M) or p38 MAPK (PD-169316, 10 µ M), but not PI3Ks (LY-294002, 50 µ M), reduced LIMK2 and cofilin gene expression stimulated by PDGF or IL-1β. Inhibition of ROCK (Y-27632, 10 µ M) reduced only the IL-1β-stimulated LIMK2 and cofilin expression. These novel observations in PASMCs indicate that LIMK2 and cofilin expression can be induced by PDGF or IL-1β. This parallel upregulation of LIMK2 and cofilin may have potentially broad functional significance for the progress of pulmonary artery disease.

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: not found

          Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase.

          The actin cytoskeleton undergoes extensive remodeling during cell morphogenesis and motility. The small guanosine triphosphatase Rho regulates such remodeling, but the underlying mechanisms of this regulation remain unclear. Cofilin exhibits actin-depolymerizing activity that is inhibited as a result of its phosphorylation by LIM-kinase. Cofilin was phosphorylated in N1E-115 neuroblastoma cells during lysophosphatidic acid-induced, Rho-mediated neurite retraction. This phosphorylation was sensitive to Y-27632, a specific inhibitor of the Rho-associated kinase ROCK. ROCK, which is a downstream effector of Rho, did not phosphorylate cofilin directly but phosphorylated LIM-kinase, which in turn was activated to phosphorylate cofilin. Overexpression of LIM-kinase in HeLa cells induced the formation of actin stress fibers in a Y-27632-sensitive manner. These results indicate that phosphorylation of LIM-kinase by ROCK and consequently increased phosphorylation of cofilin by LIM-kinase contribute to Rho-induced reorganization of the actin cytoskeleton.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization.

            Rac is a small GTPase of the Rho family that mediates stimulus-induced actin cytoskeletal reorganization to generate lamellipodia. Little is known about the signalling pathways that link Rac activation to changes in actin filament dynamics. Cofilin is known to be a potent regulator of actin filament dynamics, and its ability to bind and depolymerize actin is abolished by phosphorylation of serine residue at 3; however, the kinases responsible for this phosphorylation have not been identified. Here we show that LIM-kinase 1 (LIMK-1), a serine/threonine kinase containing LIM and PDZ domains, phosphorylates cofilin at Ser 3, both in vitro and in vivo. When expressed in cultured cells, LIMK-1 induces actin reorganization and reverses cofilin-induced actin depolymerization. Expression of an inactive form of LIMK-1 suppresses lamellipodium formation induced by Rac or insulin. Furthermore, insulin and an active form of Rac increase the activity of LIMK-1. Taken together, our results indicate that LIMK-1 participates in Rac-mediated actin cytoskeletal reorganization, probably by phosphorylating cofilin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics.

              Extracellular signals regulate actin dynamics through small GTPases of the Rho/Rac/Cdc42 (p21) family. Here we show that p21-activated kinase (Pak1) phosphorylates LIM-kinase at threonine residue 508 within LIM-kinase's activation loop, and increases LIM-kinase-mediated phosphorylation of the actin-regulatory protein cofilin tenfold in vitro. In vivo, activated Rac or Cdc42 increases association of Pak1 with LIM-kinase; this association requires structural determinants in both the amino-terminal regulatory and the carboxy-terminal catalytic domains of Pak1. A catalytically inactive LIM-kinase interferes with Rac-, Cdc42- and Pak1-dependent cytoskeletal changes. A Pak1-specific inhibitor, corresponding to the Pak1 autoinhibitory domain, blocks LIM-kinase-induced cytoskeletal changes. Activated GTPases can thus regulate actin depolymerization through Pak1 and LIM-kinase.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2004
                October 2004
                19 November 2004
                : 41
                : 5
                : 412-421
                Affiliations
                Department of Pharmacology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, Nev., USA
                Article
                81247 J Vasc Res 2004;41:412–421
                10.1159/000081247
                15467300
                © 2004 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, Tables: 1, References: 43, Pages: 10
                Categories
                Research Paper

                Comments

                Comment on this article