3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-137 Deficiency Causes Anxiety-Like Behaviors in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anxiety and depression are major public health concerns worldwide. Although genome-wide association studies have identified several genes robustly associated with susceptibility for these disorders, the molecular and cellular mechanisms associated with anxiety and depression is largely unknown. Reduction of microRNA-137 (miR-137) level has been implicated in the etiology of major depressive disorder. However, little is known about the in vivo impact of the loss of miR-137 on the biology of anxiety and depression. Here, we generated a forebrain-specific miR-137 knockout mouse line, and showed that miR-137 is critical for dendritic and synaptic growth in the forebrain. Mice with miR-137 loss-of-function exhibit anxiety-like behavior, and impaired spatial learning and memory. We then observe an elevated expression of EZH2 in the forebrain of miR-137 knockout mice, and provide direct evidence that knockdown of EZH2 can rescue anxious phenotypes associated with the loss of miR-137. Together our results suggest that loss of miR-137 contributes to the etiology of anxiety, and EZH2 might be a potential therapeutic target for anxiety and depressive phenotypes associated with the dysfunction of miR-137.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Adult hippocampal neurogenesis and cognitive flexibility — linking memory and mood

          In this Review, Anacker and Hen explore how regulation of dentate gyrus function by adult hippocampal neurogenesis may link the memory and mood functions of the hippocampus. They also examine the potential of targeting such regulation for mood disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD).

            Long-term potentiation and long-term depression (LTP/LTD) can be elicited by activating N-methyl-d-aspartate (NMDA)-type glutamate receptors, typically by the coincident activity of pre- and postsynaptic neurons. The early phases of expression are mediated by a redistribution of AMPA-type glutamate receptors: More receptors are added to potentiate the synapse or receptors are removed to weaken synapses. With time, structural changes become apparent, which in general require the synthesis of new proteins. The investigation of the molecular and cellular mechanisms underlying these forms of synaptic plasticity has received much attention, because NMDA receptor-dependent LTP and LTD may constitute cellular substrates of learning and memory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells

              Background Glioblastoma multiforme (GBM) is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells. Methods We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting. Results Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III) and glioblastoma multiforme (World Health Organization grade IV) relative to non-neoplastic brain tissue (P < 0.01), and were increased 8- to 20-fold during differentiation of cultured mouse neural stem cells following growth factor withdrawal. Expression of microRNA-137 was increased 3- to 12-fold in glioblastoma multiforme cell lines U87 and U251 following inhibition of DNA methylation with 5-aza-2'-deoxycytidine (5-aza-dC). Transfection of microRNA-124 or microRNA-137 induced morphological changes and marker expressions consistent with neuronal differentiation in mouse neural stem cells, mouse oligodendroglioma-derived stem cells derived from S100β-v-erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969). Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811) proteins. Conclusion microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse oligodendroglioma-derived stem cells and human glioblastoma multiforme-derived stem cells and induce glioblastoma multiforme cell cycle arrest. These results suggest that targeted delivery of microRNA-124 and/or microRNA-137 to glioblastoma multiforme tumor cells may be therapeutically efficacious for the treatment of this disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                30 October 2019
                2019
                : 12
                : 260
                Affiliations
                [1] 1State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing, China
                [2] 2Savaid Medical School, University of Chinese Academy of Sciences , Beijing, China
                [3] 3Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences , Beijing, China
                Author notes

                Edited by: Beena Pillai, Institute of Genomics and Integrative Biology (CSIR), India

                Reviewed by: Murray John Cairns, University of Newcastle, Australia; Jinsoo Seo, Daegu Gyeongbuk Institute of Science and Technology (DGIST), South Korea

                *Correspondence: Chang-Mei Liu liuchm@ 123456ioz.ac.cn Zhao-Qian Teng tengzq@ 123456ioz.ac.cn

                These authors have contributed equally to this work

                Article
                10.3389/fnmol.2019.00260
                6831983
                31736707
                31aee394-d30b-4d34-9065-504c6cd9b997
                Copyright © 2019 Yan, Sun, Wang, Liu, Mi, Liu, Wang, He, Du, Liu and Teng.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 June 2019
                : 11 October 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 50, Pages: 10, Words: 7403
                Categories
                Neuroscience
                Original Research

                Neurosciences
                mir-137,ezh2,synaptic transmission,synaptic plasticity,anxiety and depression
                Neurosciences
                mir-137, ezh2, synaptic transmission, synaptic plasticity, anxiety and depression

                Comments

                Comment on this article