2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Neuropeptide Signaling in the Integration of Metabolism and Reproduction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fertility is gated by nutrition and the availability of stored energy reserves, but the cellular and molecular mechanisms that link energy stores and reproduction are not well understood. Neuropeptides including galanin-like peptide (GALP), neuropeptide Y (NPY), products of the proopiomelanocortin (POMC; e.g., α-MSH and β-endorphin), and kisspeptin are thought to be involved in this process for several reasons. First, the neurons that express these neuropeptides all reside in the hypothalamic arcuate nucleus, a critical site for the regulation of both metabolism and reproduction. Second, these neuropeptides are all targets for regulation by metabolic hormones, such as leptin and insulin. And third, these neuropeptides have either direct or indirect effects on feeding and metabolism, as well as on the secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). As the target for the action of metabolic hormones and sex steroids, these neuropeptides serve as molecular motifs integrating the control of metabolism and reproduction.

          Related collections

          Most cited references 67

          • Record: found
          • Abstract: found
          • Article: not found

          Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.

          We have recently described a molecular gatekeeper of the hypothalamic-pituitary-gonadal axis with the observation that G protein-coupled receptor 54 (GPR54) is required in mice and men for the pubertal onset of pulsatile luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion to occur. In the present study, we investigate the possible central mode of action of GPR54 and kisspeptin ligand. First, we show that GPR54 transcripts are colocalized with gonadotropin-releasing hormone (GnRH) neurons in the mouse hypothalamus, suggesting that kisspeptin, the GPR54 ligand, may act directly on these neurons. Next, we show that GnRH neurons seem anatomically normal in gpr54-/- mice, and that they show projections to the median eminence, which demonstrates that the hypogonadism in gpr54-/- mice is not due to an abnormal migration of GnRH neurons (as occurs with KAL1 mutations), but that it is more likely due to a lack of GnRH release or absence of GnRH neuron stimulation. We also show that levels of kisspeptin injected i.p., which stimulate robust LH and FSH release in wild-type mice, have no effect in gpr54-/- mice, and therefore that kisspeptin acts directly and uniquely by means of GPR54 signaling for this function. Finally, we demonstrate by direct measurement, that the central administration of kisspeptin intracerebroventricularly in sheep produces a dramatic release of GnRH into the cerebrospinal fluid, with a parallel rise in serum LH, demonstrating that a key action of kisspeptin on the hypothalamo-pituitary-gonadal axis occurs directly at the level of GnRH release. The localization and GnRH release effects of kisspeptin thus define GPR54 as a major control point in the reproductive axis and suggest kisspeptin to be a neurohormonal effector.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A role for kisspeptins in the regulation of gonadotropin secretion in the mouse.

            Kisspeptins are products of the KiSS-1 gene, which bind to a G protein-coupled receptor known as GPR54. Mutations or targeted disruptions in the GPR54 gene cause hypogonadotropic hypogonadism in humans and mice, suggesting that kisspeptin signaling may be important for the regulation of gonadotropin secretion. To examine the effects of kisspeptin-54 (metastin) and kisspeptin-10 (the biologically active C-terminal decapeptide) on gonadotropin secretion in the mouse, we administered the kisspeptins directly into the lateral cerebral ventricle of the brain and demonstrated that both peptides stimulate LH secretion. Further characterization of kisspeptin-54 demonstrated that it stimulated both LH and FSH secretion, at doses as low as 1 fmol; moreover, this effect was shown to be blocked by pretreatment with acyline, a potent GnRH antagonist. To learn more about the functional anatomy of kisspeptins, we mapped the distribution of KiSS-1 mRNA in the hypothalamus. We observed that KiSS-1 mRNA is expressed in areas of the hypothalamus implicated in the neuroendocrine regulation of gonadotropin secretion, including the anteroventral periventricular nucleus, the periventricular nucleus, and the arcuate nucleus. We conclude that kisspeptin-GPR54 signaling may be part of the hypothalamic circuitry that governs the hypothalamic secretion of GnRH.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Kisspeptin Activation of Gonadotropin Releasing Hormone Neurons and Regulation of KiSS-1 mRNA in the Male Rat

              The KiSS-1 gene codes for a family of neuropeptides called kisspeptins which bind to the G-protein-coupled receptor GPR54. To assess the possible effects of kisspeptins on gonadotropin secretion, we injected kisspeptin-52 into the lateral cerebral ventricles of adult male rats and found that kisspeptin-52 increased the serum levels of luteinizing hormone (p < 0.05). To determine whether the kisspeptin-52-induced stimulation of luteinizing hormone secretion was mediated by gonadotropin-releasing hormone (GnRH), we pretreated adult male rats with a GnRH antagonist (acyline), then challenged the animals with intracerebroventricularly administered kisspeptin-52. The GnRH antagonist blocked the kisspeptin-52-induced increase in luteinizing hormone. To examine whether kisspeptins stimulate transcriptional activity in GnRH neurons, we administered kisspeptin-52 intracerebroventricularly and found by immunocytochemistry that 86% of the GnRH neurons coexpressed Fos 2 h after the kisspeptin-52 challenge, whereas fewer than 1% of the GnRH neurons expressed Fos following injection of the vehicle alone (p < 0.001). To assess whether kisspeptins can directly act on GnRH neurons, we used double-label in situ hybridization and found that 77% of the GnRH neurons coexpress GPR54 mRNA. Finally, to determine whether KiSS-1 gene expression is regulated by gonadal hormones, we measured KiSS-1 mRNA levels by single-label in situ hybridization in intact and castrated males and found significantly higher levels in the arcuate nucleus of castrates. These results demonstrate that GnRH neurons are direct targets for regulation by kisspeptins and that KiSS-1 mRNA is regulated by gonadal hormones, suggesting that KiSS-1 neurons play an important role in the feedback regulation of gonadotropin secretion.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                978-3-8055-8457-9
                978-3-8055-8458-6
                0028-3835
                1423-0194
                2007
                November 2007
                26 September 2007
                : 86
                : 3
                : 175-182
                Affiliations
                Departments of aPhysiology and Biophysics, bObstetrics and Gynecology, and cthe Undergraduate Program in Neurobiology, University of Washington, Seattle, Wash., USA
                Article
                109095 Neuroendocrinology 2007;86:175–182
                10.1159/000109095
                17898535
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 1, References: 97, Pages: 8
                Categories
                Paper

                Comments

                Comment on this article