27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Residue-specific structures and membrane locations of pH-low insertion peptide by solid-state nuclear magnetic resonance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pH-low insertion peptide (pHLIP) binds to a membrane at pH 7.4 unstructured but folds across the bilayer as a transmembrane helix at pH∼6. Despite their promising applications as imaging probes and drug carriers that target cancer cells for cytoplasmic cargo delivery, the mechanism of pH modulation on pHLIP-membrane interactions has not been completely understood. Here, we show the first study on membrane-associated pHLIP using solid-state NMR spectroscopy. Data on residue-specific conformation and membrane location describe pHLIP in various surface-bound and membrane-inserted states at pH 7.4, 6.4 and 5.3. The critical membrane-adsorbed state is more complex than previously envisioned. At pH 6.4, for the major unstructured population, the peptide sinks deeper into the membrane in a state II′ that is distinct from the adsorbed state II observed at pH 7.4, which may enable pHLIP to sense slight change in acidity even before insertion.

          Abstract

          The pH-low insertion peptides (pHLIPs) respond to environmental pH variations by forming transmembrane α-helices. Here, the authors present the residue-specific structures and membrane locations of pHLIPs at different pH levels to probe the mechanism of their pH-dependant membrane insertion.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA silencing for cancer therapy targeted to the tumor microenvironment

          SUMMARY PARAGRAPH MicroRNAs (miRNAs) are short non-coding RNAs expressed in different tissue and cell types that suppress the expression of target genes. As such, miRNAs are critical cogs in numerous biological processes 1,2 , and dysregulated miRNA expression is correlated with many human diseases. Certain miRNAs, called oncomiRs, play a causal role in the onset and maintenance of cancer when overexpressed. Tumors that depend on these miRNAs are said to display oncomiR addiction 3–5 . Some of the most effective anticancer therapies target oncogenes like EGFR and HER2; similarly, inhibition of oncomiRs using antisense oligomers (i.e. antimiRs) is an evolving therapeutic strategy 6,7 . However, the in vivo efficacy of current antimiR technologies is hindered by physiological and cellular barriers to delivery into targeted cells 8 . Here we introduce a novel antimiR delivery platform that targets the acidic tumor microenvironment, evades systemic clearance by the liver, and facilitates cell entry via a non-endocytic pathway. We found that the attachment of peptide nucleic acid (PNA) antimiRs to a peptide with a low pH-induced transmembrane structure (pHLIP) produced a novel construct that could target the tumor microenvironment, transport antimiRs across plasma membranes under acidic conditions such as those found in solid tumors (pH ~6), and effectively inhibit the miR-155 oncomiR in a mouse model of lymphoma. This study introduces a new paradigm in the use of antimiRs as anti-cancer drugs, which can have broad impacts on the field of targeted drug delivery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent progress in tumor pH targeting nanotechnology.

            pH-sensitive polymeric micelles and nanogels have recently been developed to target slightly acidic extracellular pH environment of solid tumors. The pH targeting approach is regarded as a more general strategy than conventional specific tumor cell surface targeting approaches, because the acidic tumor microclimate is most common in solid tumors. When nanosystems are combined with triggered release mechanisms by endosomal or lysosomal acidity plus endosomolytic capability, the nanocarriers demonstrated to overcome multidrug resistance of various tumors. This review highlights recent progress of the pH-sensitive nanotechnology developed in Bae research group.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The relevance of tumour pH to the treatment of malignant disease.

              The wide range of tumour pH values that have been determined in human tumours is shown in Fig. 4. It can be seen that tumour pH values may be very low, or may fall in the same range as the values found in normal tissues. This means that pH-mediated modification of therapeutic effectiveness will be patient specific, rather than a general phenomenon. That the pH of the cellular environment might influence the effectiveness of various therapeutic agents is not a new idea. The data published in this field to date concerning such effects have been discussed extensively and are summarized in Table IV. Here we can see that low pH leads to decreased cell survival following treatment with hyperthermia, radiotherapy combined with hyperthermia, radiosensitizers and various chemotherapeutic agents. Conversely, low pH affords some protection against radiation and some drugs. Most of these data were, of necessity, derived from in vitro studies. In vivo studies are in most cases not feasible due to the difficulty of isolating the effect of one selected factor. Low tumour pH is, in vivo, generally assumed to be closely interlinked with tissue hypoxia and low blood-flow levels, each of which may individually influence the experimental outcome. Moreover, most of the aforementioned in vitro studies were conducted under well-oxygenated conditions. As previously mentioned, euoxic cells can, under certain conditions, maintain a pH gradient over the cell membrane. This collapses with the onset of hypoxia, leading to intracellular acidification. Low oxygen levels have been shown to be characteristic of many tumours. Within these limitations it is thus evident that tumour pH values could have far-reaching consequences for therapy. If the in vitro findings should prove to be relevant to the clinical situation various applications are possible. Pre-selection of patients less likely to respond to certain (toxic) chemotherapeutic agents, or conversely selection of agents that are more likely to be effective in the pH range of the tumour to be treated are two examples. Alternatively, the exploitation of low tumour pH values is a possibility. Agents that form or release toxic derivatives in areas of low pH, e.g., pH-sensitive liposomes, will work selectively in such areas. Tumour selective therapy may also be possible in patients with higher tumour pH values if the tumour pH can be lowered. This has been achieved experimentally by the administration of hyperthermia at temperatures above 42 degrees C, or by the administration of glucose.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                21 July 2015
                2015
                : 6
                : 7787
                Affiliations
                [1 ]Department of Chemistry, State University of New York , Binghamton, New York 13902, USA
                [2 ]Department of Physics, Applied Physics and Astronomy, State University of New York , Binghamton, New York 13902, USA
                Author notes
                Author information
                http://orcid.org/0000-0002-6988-8058
                Article
                ncomms8787
                10.1038/ncomms8787
                4518304
                26195283
                31b5c27a-453a-46b0-a2b6-4be838444275
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 26 February 2015
                : 10 June 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article