Blog
About

15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Behavioral effects of insect-resistant genetically modified crops on phytophagous and beneficial arthropods: a review

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 196

          • Record: found
          • Abstract: found
          • Article: not found

          The sublethal effects of pesticides on beneficial arthropods.

          Traditionally, measurement of the acute toxicity of pesticides to beneficial arthropods has relied largely on the determination of an acute median lethal dose or concentration. However, the estimated lethal dose during acute toxicity tests may only be a partial measure of the deleterious effects. In addition to direct mortality induced by pesticides, their sublethal effects on arthropod physiology and behavior must be considered for a complete analysis of their impact. An increasing number of studies and methods related to the identification and characterization of these effects have been published in the past 15 years. Review of sublethal effects reported in published literature, taking into account recent data, has revealed new insights into the sublethal effects of pesticides including effects on learning performance, behavior, and neurophysiology. We characterize the different types of sublethal effects on beneficial arthropods, focusing mainly on honey bees and natural enemies, and we describe the methods used in these studies. Finally, we discuss the potential for developing experimental approaches that take into account these sublethal effects in integrated pest management and the possibility of integrating their evaluation in pesticide registration procedures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Habitat management to conserve natural enemies of arthropod pests in agriculture.

            Many agroecosystems are unfavorable environments for natural enemies due to high levels of disturbance. Habitat management, a form of conservation biological control, is an ecologically based approach aimed at favoring natural enemies and enhancing biological control in agricultural systems. The goal of habitat management is to create a suitable ecological infrastructure within the agricultural landscape to provide resources such as food for adult natural enemies, alternative prey or hosts, and shelter from adverse conditions. These resources must be integrated into the landscape in a way that is spatially and temporally favorable to natural enemies and practical for producers to implement. The rapidly expanding literature on habitat management is reviewed with attention to practices for favoring predators and parasitoids, implementation of habitat management, and the contributions of modeling and ecological theory to this developing area of conservation biological control. The potential to integrate the goals of habitat management for natural enemies and nature conservation is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Defensive function of herbivore-induced plant volatile emissions in nature.

              Herbivore attack is known to increase the emission of volatiles, which attract predators to herbivore-damaged plants in the laboratory and agricultural systems. We quantified volatile emissions from Nicotiana attenuata plants growing in natural populations during attack by three species of leaf-feeding herbivores and mimicked the release of five commonly emitted volatiles individually. Three compounds (cis-3-hexen-1-ol, linalool, and cis-alpha-bergamotene) increased egg predation rates by a generalist predator; linalool and the complete blend decreased lepidopteran oviposition rates. As a consequence, a plant could reduce the number of herbivores by more than 90% by releasing volatiles. These results confirm that indirect defenses can operate in nature.
                Bookmark

                Author and article information

                Journal
                Journal of Pest Science
                J Pest Sci
                Springer Nature
                1612-4758
                1612-4766
                September 2016
                August 6 2016
                September 2016
                : 89
                : 4
                : 859-883
                Article
                10.1007/s10340-016-0791-2
                © 2016

                http://www.springer.com/tdm

                Comments

                Comment on this article