8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      SOD2 is upregulated in periodontitis to reduce further inflammation progression

      1 , 2 , 1 , 2
      Oral Diseases
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative genomic approaches identify IKBKE as a breast cancer oncogene.

          The karyotypic chaos exhibited by human epithelial cancers complicates efforts to identify mutations critical for malignant transformation. Here we integrate complementary genomic approaches to identify human oncogenes. We show that activation of the ERK and phosphatidylinositol 3-kinase (PI3K) signaling pathways cooperate to transform human cells. Using a library of activated kinases, we identify several kinases that replace PI3K signaling and render cells tumorigenic. Whole genome structural analyses reveal that one of these kinases, IKBKE (IKKepsilon), is amplified and overexpressed in breast cancer cell lines and patient-derived tumors. Suppression of IKKepsilon expression in breast cancer cell lines that harbor IKBKE amplifications induces cell death. IKKepsilon activates the nuclear factor-kappaB (NF-kappaB) pathway in both cell lines and breast cancers. These observations suggest a mechanism for NF-kappaB activation in breast cancer, implicate the NF-kappaB pathway as a downstream mediator of PI3K, and provide a framework for integrated genomic approaches in oncogene discovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice.

            Manganese superoxide dismutase (SOD2) converts superoxide to oxygen plus hydrogen peroxide and serves as the primary defense against mitochondrial superoxide. Impaired SOD2 activity in humans has been associated with several chronic diseases, including ovarian cancer and type I diabetes, and SOD2 overexpression appears to suppress malignancy in cultured cells. We have produced a line of SOD2 knockout mice (SOD2m1BCM/SOD2m1BCM) that survive up to 3 weeks of age and exhibit several novel pathologic phenotypes including severe anemia, degeneration of neurons in the basal ganglia and brainstem, and progressive motor disturbances characterized by weakness, rapid fatigue, and circling behavior. In addition, SOD2m1BCM/SOD2m1BCM mice older than 7 days exhibit extensive mitochondrial injury within degenerating neurons and cardiac myocytes. Approximately 10% of SOD2m1BCM/SOD2m1BCM mice exhibit markedly enlarged and dilated hearts. These observations indicate that SOD2 deficiency causes increased susceptibility to oxidative mitochondrial injury in central nervous system neurons, cardiac myocytes, and other metabolically active tissues after postnatal exposure to ambient oxygen concentrations. Our SOD2-deficient mice differ from a recently described model in which homozygotes die within the first 5 days of life with severe cardiomyopathy and do not exhibit motor disturbances, central nervous system injury, or ultrastructural evidence of mitochondrial injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target.

              Excessive proliferation and impaired apoptosis of pulmonary artery (PA) smooth muscle cells (PASMCs) contribute to vascular obstruction in patients and fawn-hooded rats (FHRs) with PA hypertension (PAH). Expression and activity of mitochondrial superoxide dismutase-2 (SOD2), the major generator of H(2)O(2), is known to be reduced in PAH; however, the mechanism and therapeutic relevance of this are unknown. SOD2 expression in PASMCs is decreased in PAH patients and FHRs with PAH. FHR PASMCs have higher proliferation and lower apoptosis rates than Sprague-Dawley rat PASMCs. Moreover, FHR PASMCs have hyperpolarized mitochondria, low H(2)O(2) production, and reduced cytoplasmic and mitochondrial redox state. Administration of SOD2 small interfering RNA to normal PASMCs recapitulates the FHR PAH phenotype, hyperpolarizing mitochondria, decreasing H(2)O(2), and inhibiting caspase activity. Conversely, SOD2 overexpression in FHR PASMCs or therapy with the SOD-mimetic metalloporphyrin Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP) reverses the hyperproliferative PAH phenotype. Importantly, SOD-mimetic therapy regresses PAH in vivo. Investigation of the SOD2 gene revealed no mutation, suggesting a possible epigenetic dysregulation. Genomic bisulfite sequencing demonstrates selective hypermethylation of a CpG island in an enhancer region of intron 2 and another in the promoter. Differential methylation occurs selectively in PAs versus aortic SMCs and is reversed by the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine, restoring both SOD2 expression and the ratio of proliferation to apoptosis. Expression of the enzymes that mediate gene methylation, DNA methyltransferases 1 and 3B, is upregulated in FHR lungs. Tissue-specific, epigenetic SOD2 deficiency initiates and sustains a heritable form of PAH by impairing redox signaling and creating a proliferative, apoptosis-resistant PASMC. SOD augmentation regresses experimental PAH. The discovery of an epigenetic component to PAH may offer new therapeutic targets.
                Bookmark

                Author and article information

                Journal
                Oral Diseases
                Oral Dis
                Wiley
                1354523X
                November 2018
                November 2018
                August 14 2018
                : 24
                : 8
                : 1572-1580
                Affiliations
                [1 ]Department of Periodontology, School of Dentistry; Kyungpook National University; Daegu Korea
                [2 ]Department of Pharmacology, School of Dentistry; Kyungpook National University; Daegu Korea
                Article
                10.1111/odi.12933
                29972711
                31cc8572-d4b1-43e6-92e7-0b1251868724
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article