29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polycyclic Aromatic Hydrocarbon-Induced Signaling Events Relevant to Inflammation and Tumorigenesis in Lung Cells Are Dependent on Molecular Structure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental and occupational toxicants, which are a major human health concern in the U.S. and abroad. Previous research has focused on the genotoxic events caused by high molecular weight PAHs, but not on non-genotoxic events elicited by low molecular weight PAHs. We used an isomeric pair of low molecular weight PAHs, namely 1-Methylanthracene (1-MeA) and 2-Methylanthracene (2-MeA), in which only 1-MeA possessed a bay-like region, and hypothesized that 1-MeA, but not 2-MeA, would affect non-genotoxic endpoints relevant to tumor promotion in murine C10 lung cells, a non-tumorigenic type II alveolar pneumocyte and progenitor cell type of lung adenocarcinoma. The non-genotoxic endpoints assessed were dysregulation of gap junction intercellular communication function and changes in the major pulmonary connexin protein, connexin 43, using fluorescent redistribution and immunoblots, activation of mitogen activated protein kinases (MAPK) using phosphospecific MAPK antibodies for immunoblots, and induction of inflammatory genes using quantitative RT-PCR. 2-MeA had no effect on any of the endpoints, but 1-MeA dysregulated gap junctional communication in a dose and time dependent manner, reduced connexin 43 protein expression, and altered membrane localization. 1-MeA also activated ERK1/2 and p38 MAP kinases. Inflammatory genes, such as cyclooxygenase 2, and chemokine ligand 2 (macrophage chemoattractant 2), were also upregulated in response to 1-MeA only. These results indicate a possible structure-activity relationship of these low molecular weight PAHs relevant to non-genotoxic endpoints of the promoting aspects of cancer. Therefore, our novel findings may improve the ability to predict outcomes for future studies with additional toxicants and mixtures, identify novel targets for biomarkers and chemotherapeutics, and have possible implications for future risk assessment for these PAHs.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Role of NRF2 in protection against hyperoxic lung injury in mice.

          NRF2 is a transcription factor important in the protection against carcinogenesis and oxidative stress through antioxidant response element (ARE)-mediated transcriptional activation of several phase 2 detoxifying and antioxidant enzymes. This study was designed to determine the role of NRF2 in the pathogenesis of hyperoxic lung injury by comparing pulmonary responses to 95-98% oxygen between mice with site-directed mutation of the gene for NRF2 (Nrf2-/-) and wild-type mice (Nrf2+/+). Pulmonary hyperpermeability, macrophage inflammation, and epithelial injury in Nrf2-/- mice were 7.6-fold, 47%, and 43% greater, respectively, compared with Nrf2+/+ mice after 72 h hyperoxia exposure. Hyperoxia markedly elevated the expression of NRF2 mRNA and DNA-binding activity of NRF2 in the lungs of Nrf2+/+ mice. mRNA expression for ARE- responsive lung antioxidant and phase 2 enzymes was evaluated in both genotypes of mice to identify potential downstream molecular mechanisms of NRF2 in hyperoxic lung responses. Hyperoxia-induced mRNA levels of NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione-S-transferase (GST)-Ya and -Yc subunits, UDP glycosyl transferase (UGT), glutathione peroxidase-2 (GPx2), and heme oxygenase-1 (HO-1) were significantly lower in Nrf2-/- mice compared with Nrf2+/+ mice. Consistent with differential mRNA expression, NQO1 and total GST activities were significantly lower in Nrf2-/- mice compared with Nrf2+/+ mice after hyperoxia. Results demonstrated that NRF2 has a significant protective role against pulmonary hyperoxic injury in mice, possibly through transcriptional activation of lung antioxidant defense enzymes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of connexin phosphorylation on gap junctional communication.

            Gap junctions are specialized membrane domains composed of collections of channels that directly connect neighboring cells providing for the cell-to-cell diffusion of small molecules, including ions, amino acids, nucleotides, and second messengers. Vertebrate gap junctions are composed of proteins encoded by the "connexin" gene family. In most cases examined, connexins are modified post-translationally by phosphorylation. Phosphorylation has been implicated in the regulation of gap junctional communication at several stages of the connexin "lifecycle", such as the trafficking, assembly/disassembly, degradation, as well as, the gating of gap junction channels. Since connexin43 (Cx43) is widely expressed in tissues and cell lines, we understand the most about how it is regulated, and thus, connexin43 phosphorylation is a major focus of this review. Recent reports utilizing new methodologies combined with the latest genome information have shown that activation of several kinases including protein kinase A, protein kinase C, p34(cdc2)/cyclin B kinase, casein kinase 1, mitogen-activated protein (MAP) kinase and pp60(src) kinase can lead to phosphorylation at 12 of the 21 serine and two of the six tyrosine residues in the C-terminal region of connexin43. In several cases, use of site-directed mutants of these sites have shown that these specific phosphorylation events can be linked to changes in gap junctional communication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques

              We previously demonstrated that the gap junction protein connexin43 is translated as a 42-kD protein (connexin43-NP) that is efficiently phosphorylated to a 46,000-Mr species (connexin43-P2) in gap junctional communication-competent, but not in communication-deficient, cells. In this study, we used a combination of metabolic radiolabeling and immunoprecipitation to investigate the assembly of connexin43 into gap junctions and the relationship of this event to phosphorylation of connexin43. Examination of the detergent solubility of connexin43 in communication-competent NRK cells revealed that processing of connexin43 to the P2 form was accompanied by acquisition of resistance to solubilization in 1% Triton X-100. Immunohistochemical localization of connexin43 in Triton-extracted NRK cells demonstrated that connexin43-P2 (Triton-insoluble) was concentrated in gap junctional plaques, whereas connexin43-NP (Triton-soluble) was predominantly intracellular. Using either a 20 degrees C intracellular transport block or cell-surface protein biotinylation, we determined that connexin43 was transported to the plasma membrane in the Triton-soluble connexin43-NP form. Cell-surface biotinylated connexin43-NP was processed to Triton-insoluble connexin43-P2 at 37 degrees C. Connexin43- NP was also transported to the plasma membrane in communication defective, gap junction-deficient S180 and L929 cells but was not processed to Triton-insoluble connexin43-P2. Taken together, these results demonstrate that gap junction assembly is regulated after arrival of connexin43 at the plasma membrane and is temporally associated with acquisition of insolubility in Triton X-100 and phosphorylation to the connexin43-P2 form.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                3 June 2013
                : 8
                : 6
                : e65150
                Affiliations
                [1 ]Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
                [2 ]Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
                [3 ]Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, United States of America
                University Paris Diderot-Paris 7, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AKB RO PB BLU. Performed the experiments: RO AKB TH KLH KV. Analyzed the data: AKB RO BLU PB. Contributed reagents/materials/analysis tools: AKB BLU. Wrote the paper: RO AKB BLU.

                Article
                PONE-D-13-05701
                10.1371/journal.pone.0065150
                3670909
                23755184
                31d01e93-18c5-4e01-a5dc-6eb08a47aa85
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 February 2013
                : 23 April 2013
                Page count
                Pages: 11
                Funding
                This work was funded by intramural Colorado School of Public Health, CU funds (A.K.B.), NIEHS ES013268-01A2 (B.L.U.), and the Department of Pharmaceutical Sciences Toxicology Graduate Program (RSO). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Immunity
                Inflammation
                Molecular Cell Biology
                Signal Transduction
                Signaling Cascades
                ERK signaling cascade
                MAPK signaling cascades
                Medicine
                Clinical Immunology
                Immunity
                Inflammation
                Oncology
                Cancer Risk Factors
                Environmental Causes of Cancer
                Cancers and Neoplasms
                Lung and Intrathoracic Tumors
                Adenocarcinoma of the Lung
                Public Health
                Environmental Health
                Pulmonology
                Environmental and Occupational Lung Diseases
                Toxicology
                Immunotoxicology
                Toxic Agents

                Uncategorized
                Uncategorized

                Comments

                Comment on this article