12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Context Analysis of de Novo STXBP1 Mutations Identifies Evidence of Splice Site DNA-Motif Associated Hotspots

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations within STXBP1 have been associated with a range of neurodevelopmental disorders implicating the pleotropic impact of this gene. Although the frequency of de novo mutations within STXBP1 for selective cohorts with early onset epileptic encephalopathy is more than 1%, there is no evidence for a hotspot within the gene. In this study, we analyzed the genomic context of de novo STXBP1 mutations to examine whether certain motifs indicated a greater risk of mutation. Through a comprehensive context analysis of 136 de novo/rare mutation (SNV/Indels) sites in this gene, strikingly 26.92% of all SNV mutations occurred within 5bp upstream or downstream of a ‘GTA’ motif ( P < 0.0005). This implies a genomic context modulated mutagenesis. Moreover, 51.85% (14 out of 27) of the ‘GTA’ mutations are splicing compared to 14.70% (20 out of 136) of all reported mutations within STXBP1. We also noted that 11 of these 14 ‘GTA’ associated mutations are de novo in origin. Our analysis provides strong evidence of DNA motif modulated mutagenesis for STXBP1 de novo splicing mutations.

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells.

          Cytosine methylation is required for mammalian development and is often perturbed in human cancer. To determine how this epigenetic modification is distributed in the genomes of primary and transformed cells, we used an immunocapturing approach followed by DNA microarray analysis to generate methylation profiles of all human chromosomes at 80-kb resolution and for a large set of CpG islands. In primary cells we identified broad genomic regions of differential methylation with higher levels in gene-rich neighborhoods. Female and male cells had indistinguishable profiles for autosomes but differences on the X chromosome. The inactive X chromosome (Xi) was hypermethylated at only a subset of gene-rich regions and, unexpectedly, overall hypomethylated relative to its active counterpart. The chromosomal methylation profile of transformed cells was similar to that of primary cells. Nevertheless, we detected large genomic segments with hypomethylation in the transformed cell residing in gene-poor areas. Furthermore, analysis of 6,000 CpG islands showed that only a small set of promoters was methylated differentially, suggesting that aberrant methylation of CpG island promoters in malignancy might be less frequent than previously hypothesized.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The ExAC browser: displaying reference data information from over 60 000 exomes

            Worldwide, hundreds of thousands of humans have had their genomes or exomes sequenced, and access to the resulting data sets can provide valuable information for variant interpretation and understanding gene function. Here, we present a lightweight, flexible browser framework to display large population datasets of genetic variation. We demonstrate its use for exome sequence data from 60 706 individuals in the Exome Aggregation Consortium (ExAC). The ExAC browser provides gene- and transcript-centric displays of variation, a critical view for clinical applications. Additionally, we provide a variant display, which includes population frequency and functional annotation data as well as short read support for the called variant. This browser is open-source, freely available at http://exac.broadinstitute.org, and has already been used extensively by clinical laboratories worldwide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome.

              Rett syndrome (RTT), a neurodevelopmental disorder that primarily affects girls, is characterised by a period of apparently normal development until 6-18 months of age when motor and communication abilities regress. More than 95% of individuals with RTT have mutations in methyl-CpG-binding protein 2 (MECP2), whose protein product modulates gene transcription. Surprisingly, although the disorder is caused by mutations in a single gene, disease severity in affected individuals can be quite variable. To explore the source of this phenotypic variability, we propose that specific MECP2 mutations lead to different degrees of disease severity. Using a database of 1052 participants assessed over 4940 unique visits, the largest cohort of both typical and atypical RTT patients studied to date, we examined the relationship between MECP2 mutation status and various phenotypic measures over time. In general agreement with previous studies, we found that particular mutations, such as p.Arg133Cys, p.Arg294X, p.Arg306Cys, 3° truncations and other point mutations, were relatively less severe in both typical and atypical RTT. In contrast, p.Arg106Trp, p.Arg168X, p.Arg255X, p.Arg270X, splice sites, deletions, insertions and deletions were significantly more severe. We also demonstrated that, for most mutation types, clinical severity increases with age. Furthermore, of the clinical features of RTT, ambulation, hand use and age at onset of stereotypies are strongly linked to overall disease severity. We have confirmed that MECP2 mutation type is a strong predictor of disease severity. These data also indicate that clinical severity continues to become progressively worse regardless of initial severity. These findings will allow clinicians and families to anticipate and prepare better for the needs of individuals with RTT.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                22 February 2018
                April 2018
                : 8
                : 4
                : 1115-1118
                Affiliations
                [* ]Mohammed Bin Rashid University of Medicine and Health Sciences, College of Medicine, 505055 Dubai, United Arab Emirates 505055,
                []The Centre for Applied Genomics,
                [§ ]Program in Genetics and Genome Biology,
                [§§ ]Division of Neurology, and
                [*** ]McLaughlin Centre, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8,
                []Institute of Neuroscience NE2 4HH is the postal code, Newcastle University, Newcastle upon Tyne, United Kingdom,
                [** ]Department of Molecular Genetics and
                [†† ]Division of Neurology, BC Children’s Hospital, Vancouver, BC, Canada V6H 3N1, and
                [‡‡ ]Al Jalila Children’s Specialty Hospital, Dubai, United Arab Emirates PO Box: 76662
                Author notes
                [1 ]Corresponding authors: Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Healthcare City, P.O. Box 505055, Dubai, UAE 505055. E-mail: mohammed.uddin@ 123456mbru.ac.ae ; and 555 University Ave, Toronto, ON M5G 1X8, Canada. E-mail: Stephen.Scherer@ 123456sickkids.ca
                Article
                GGG_200080
                10.1534/g3.118.200080
                5873902
                29438995
                31d1e6de-c6c7-4919-913e-54475ba31050
                Copyright © 2018 Uddin et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 November 2017
                : 05 February 2018
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 27, Pages: 4
                Categories
                Mutant Screen Report

                Genetics
                genome context,epilepsy encephalopathy,loss of function mutation,dna motif,mutation etiology,mutant screen report

                Comments

                Comment on this article