7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of dietary supplementation of cinnamaldehyde and formic acid on growth performance, intestinal microbiota and immune response in broiler chickens

      , , , , ,
      Animal Production Science
      CSIRO Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An experiment was conducted to investigate the effects of replacing antibiotic growth promoter (AGP) with a combination of essential oil and organic acids (EO + OA) on growth performance, gut microbiota and immune response in broiler chickens. In Experiment 1, 320 day-old broiler chicks were randomly distributed to 32 pens with 10 birds in each pen and the pens were equally allotted to four treatment groups. In Experiment 2, 120 day-old chicks were divided into the same four treatment groups, each group containing three replicated pens with 10 birds in each pen. The groups were (1) Negative Control (NC) without AGP or other growth-promoting feed additives; (2) AGP (NC + enramycin; 125 mg/kg feed; (3) OA (NC + OA; 500 mg/kg feed); and (4) EO + OA (NC + a combination of cinnamaldehyde and calcium formate; 500 mg/kg feed). Experiment 1 lasted for 40 days, whereas Experiment 2 continued for 28 days. In Experiment 2, all birds were orally challenged with Escherichia coli (108 bacteria/bird) on Day 14. Overall intake, growth and feed conversion ratio (FCR) on Day 40 had no difference (P > 0.05) among the groups in Experiment 1. In Experiment 2, growth, feed intake and FCR were not affected by any dietary treatments until Day 14, but after being challenged with E. coli, bodyweight gain and FCR improved (P < 0.05) for AGP and EO + OA compared with NC. Mortality rate was also lower (P < 0.05) for AGP and EO + OA than NC in Experiment 2. Villi height was higher (P < 0.001) in OA and EO + OA groups compared with NC and AGP groups. Any treatment did not affect (P > 0.05) the counts of total bacteria, E. coli and Lactobacillus in the contents of ileum and caecum. However, Salmonella counts in the ileal and caecal contents decreased (P < 0.001) for AGP, OA and EO + OA compared with NC group. Clostridium counts were lower for EO + OA group than for NC and AGP groups in the ileum, and for AGP, OA and EO + OA groups than for NC in the caeca (P < 0.05). Antibody titer on Day 35 against Newcastle disease vaccine was higher in EO + OA group than in NC, AGP and OA groups (P < 0.001). In conclusion, EO + OA did not affect growth and FCR in broilers. However, AGP and EO + AO improved growth performance and FCR after being challenged with E. coli. Moreover, EO + OA was effective in reducing the Clostridium count in the small intestine and caecum and increasing the villus height and antibody titer against Newcastle disease vaccine.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Essential oils: their antibacterial properties and potential applications in foods--a review.

          In vitro studies have demonstrated antibacterial activity of essential oils (EOs) against Listeria monocytogenes, Salmonella typhimurium, Escherichia coli O157:H7, Shigella dysenteria, Bacillus cereus and Staphylococcus aureus at levels between 0.2 and 10 microl ml(-1). Gram-negative organisms are slightly less susceptible than gram-positive bacteria. A number of EO components has been identified as effective antibacterials, e.g. carvacrol, thymol, eugenol, perillaldehyde, cinnamaldehyde and cinnamic acid, having minimum inhibitory concentrations (MICs) of 0.05-5 microl ml(-1) in vitro. A higher concentration is needed to achieve the same effect in foods. Studies with fresh meat, meat products, fish, milk, dairy products, vegetables, fruit and cooked rice have shown that the concentration needed to achieve a significant antibacterial effect is around 0.5-20 microl g(-1) in foods and about 0.1-10 microl ml(-1) in solutions for washing fruit and vegetables. EOs comprise a large number of components and it is likely that their mode of action involves several targets in the bacterial cell. The hydrophobicity of EOs enables them to partition in the lipids of the cell membrane and mitochondria, rendering them permeable and leading to leakage of cell contents. Physical conditions that improve the action of EOs are low pH, low temperature and low oxygen levels. Synergism has been observed between carvacrol and its precursor p-cymene and between cinnamaldehyde and eugenol. Synergy between EO components and mild preservation methods has also been observed. Some EO components are legally registered flavourings in the EU and the USA. Undesirable organoleptic effects can be limited by careful selection of EOs according to the type of food.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers.

              Two hundred forty male Avian Farms broiler chicks, 1 d of age, were randomly allocated to four treatments, each of which had five pens of 12 chicks per pen. The chicks were used to investigate the effects of fructooligosaccharide (FOS) on digestive enzyme activities and intestinal microflora and morphology. The chicks received the same basal diet based on corn-soybean meal, and FOS was added to the basal diet at 0, 2.0, 4.0, and 8.0 g/kg diet at the expense of corn. Addition of 4.0 g/kg FOS to the basal diet significantly increased average daily gain of broilers. The feed-to-gain ratios were significantly decreased for the birds fed diets with 2.0 and 4.0 g/kg FOS versus the control. Addition of 4.0 g/kg FOS enhanced the growth of Bifidobacterium and Lactobacillus, but inhibited Escherichia coli in the small intestinal and cecal digesta. Supplementation of 2.0 or 4.0 g/kg FOS to chicks significantly improved the activities of amylase compared to the control (12.80 or 14.75 vs. 8.42 Somogyi units). A significant increase in the activities of total protease was observed in 4.0 g/kg FOS-treated birds versus controls (83.91 vs. 65.97 units). Morphology data for the duodenum, jejunum, and ileum showed no significant differences for villus height, crypt depth, or microvillus height at the duodenum. By contrast, addition of 4.0 g/kg FOS significantly increased ileal villus height, jejunal and ileal microvillus height, and villus-height-to-crypt-depth ratios at the jejunum and ileum and decreased crypt depth at the jejunum and ileum. However, addition of 8.0 g/kg FOS had no significant effect on growth performance, digestive enzyme activities, intestinal microflora, or morphology.
                Bookmark

                Author and article information

                Journal
                Animal Production Science
                Anim. Prod. Sci.
                CSIRO Publishing
                1836-0939
                2017
                2017
                : 57
                : 5
                : 821
                Article
                10.1071/AN15816
                31d83b41-f157-467b-84cd-76619f32bee4
                © 2017
                History

                Comments

                Comment on this article