17
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First record of Megaphragma (Hymenoptera, Trichogrammatidae) in Columbia, and third animal species known to have anucleate neurons

      Journal of Hymenoptera Research
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          The smallest insects evolve anucleate neurons.

          The smallest insects are comparable in size to unicellular organisms. Thus, their size affects their structure not only at the organ level, but also at the cellular level. Here we report the first finding of animals with an almost entirely anucleate nervous system. Adults of the smallest flying insects of the parasitic wasp genus Megaphragma (Hymenoptera: Trichogrammatidae) have only 339-372 nuclei in the central nervous system, i.e., their ganglia, including the brain, consist almost exclusively of processes of neurons. In contrast, their pupae have ganglia more typical of other insects, with about 7400 nuclei in the central nervous system. During the final phases of pupal development, most neuronal cell bodies lyse. As adults, these insects have many fewer nucleated neurons, a small number of cell bodies in different stages of lysis, and about 7000 anucleate cells. Although most neurons lack nuclei, these insects exhibit many important behaviors, including flight and searching for hosts. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera, Mymaridae), with comments on its sister genus Kikiki, and discussion on small size limits in arthropods

            A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera: Mymaridae) gen. n. and sp. n., is described from Costa Rica. It is compared with the related genus Kikiki Huber and Beardsley from the Hawaiian Islands, Costa Rica and Trinidad. A specimen of Kikiki huna Huber measured 158 µm long, thus holding the record for the smallest winged insect. The smallest size possible, as measured by body length, for flying insects and wingless arthropods is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Anatomy of adult Megaphragma (Hymenoptera: Trichogrammatidae), one of the smallest insects, and new insight into insect miniaturization

              The body size, especially in cases of extreme reduction, is an important characteristic that strongly determines the morphology, physiology, and biology of animals. Miniaturization is a widespread trend in animal evolution and one of the principal directions of evolution in insects. Miniaturization-related features of insect morphology have been subject to intensive studies during the last few years, but the structure of the smallest insects remains insufficiently known. It is especially important to study hymenopterans of the genus Megaphragma, which include the smallest flying insects and a species in which an almost anucleate nervous system was recently discovered. This article is the first detailed study of the external and internal morphology of adults of Megaphragma mymaripenne and M. amalphitanum using histological methods, 3D computer modeling and other techniques. It is shown that in spite of the extremely small size the organization of Megaphragma retains a considerkable level of structural complexity. On the other hand, miniaturization leads to re-organizations of several organ systems. Unique structural features related to miniaturization have been found in both species: lysis of cell bodies and nuclei of neurons at late stages of pupal development, absence of the heart, and considerable reductions in the set of muscles. Comparative analysis of structure in the smallest insects representing different taxa has revealed common features of the evolutionary process of miniaturization in insects.
                Bookmark

                Author and article information

                Journal
                Journal of Hymenoptera Research
                JHR
                Pensoft Publishers
                1314-2607
                1070-9428
                October 30 2017
                October 30 2017
                : 60
                : 181-185
                Article
                10.3897/jhr.60.19907
                31db96d7-8e25-435f-8615-9fd2a7671f05
                © 2017

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article