13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunological Aspects of the Tumor Microenvironment and Epithelial-Mesenchymal Transition in Gastric Carcinogenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infection with Helicobacter pylori, a Gram-negative, microaerophilic pathogen often results in gastric cancer in a subset of affected individuals. This explains why H. pylori is the only bacterium classified as a class I carcinogen by the World Health Organization. Several studies have pinpointed mechanisms by which H. pylori alters signaling pathways in the host cell to cause diseases. In this article, the authors have reviewed 234 studies conducted over a span of 18 years (2002–2020). The studies investigated the various mechanisms associated with gastric cancer induction. For the past 1.5 years, researchers have discovered new mechanisms contributing to gastric cancer linked to H. pylori etiology. Alongside alteration of the host signaling pathways using oncogenic CagA pathways, H. pylori induce DNA damage in the host and alter the methylation of DNA as a means of perturbing downstream signaling. Also, with H. pylori, several pathways in the host cell are activated, resulting in epithelial-to-mesenchymal transition (EMT), together with the induction of cell proliferation and survival. Studies have shown that H. pylori enhances gastric carcinogenesis via a multifactorial approach. What is intriguing is that most of the targeted mechanisms and pathways appear common with various forms of cancer.

          Related collections

          Most cited references185

          • Record: found
          • Abstract: found
          • Article: not found

          Global estimates of cancer prevalence for 27 sites in the adult population in 2008.

          Recent estimates of global cancer incidence and survival were used to update previous figures of limited duration prevalence to the year 2008. The number of patients with cancer diagnosed between 2004 and 2008 who were still alive at the end of 2008 in the adult population is described by world region, country and the human development index. The 5-year global cancer prevalence is estimated to be 28.8 million in 2008. Close to half of the prevalence burden is in areas of very high human development that comprise only one-sixth of the world's population. Breast cancer continues to be the most prevalent cancer in the vast majority of countries globally; cervix cancer is the most prevalent cancer in much of Sub-Saharan Africa and Southern Asia and prostate cancer dominates in North America, Oceania and Northern and Western Europe. Stomach cancer is the most prevalent cancer in Eastern Asia (including China); oral cancer ranks as the most prevalent cancer in Indian men and Kaposi sarcoma has the highest 5-year prevalence among men in 11 countries in Sub-Saharan Africa. The methods used to estimate point prevalence appears to give reasonable results at the global level. The figures highlight the need for long-term care targeted at managing patients with certain very frequently diagnosed cancer forms. To be of greater relevance to cancer planning, the estimation of other time-based measures of global prevalence is warranted. Copyright © 2012 UICC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors.

            Signal transducers and activators of transcription (STATs) comprise a family of cytoplasmic transcription factors that mediate intracellular signaling that is usually generated at cell surface receptors and thereby transmit it to the nucleus. Numerous studies have demonstrated constitutive activation of STAT3 in a wide variety of human tumors, including hematological malignancies (leukemias, lymphomas, and multiple myeloma) as well as diverse solid tumors (such as head and neck, breast, lung, gastric, hepatocellular, colorectal and prostate cancers). There is strong evidence to suggest that aberrant STAT3 signaling promotes initiation and progression of human cancers by either inhibiting apoptosis or inducing cell proliferation, angiogenesis, invasion, and metastasis. Suppression of STAT3 activation results in the induction of apoptosis in tumor cells, and accordingly its pharmacological modulation by tyrosine kinase inhibitors, antisense oligonucleotides, decoy nucleotides, dominant negative proteins, RNA interference and chemopreventive agents have been employed to suppress the proliferation of various human cancer cells in culture and tumorigenicity in vivo. However, the identification and development of novel drugs that can target deregulated STAT3 activation effectively remains an important scientific and clinical challenge. This review presents the evidence for critical roles of STAT3 in oncogenesis and discusses the potential for development of novel cancer therapies based on mechanistic understanding of STAT3 signaling cascade. Copyright © 2013 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of fibroblast heterogeneity in the tumor microenvironment.

              Tumors are unorganized organs that contain many different cell types. In the recent years, many studies have reported that primary tumors contain fibroblasts/myofibroblasts (carcinoma-associated fibroblasts), mesenchymal cells such as pericytes/mural cells and other vascular smooth muscle cells. Several different markers are used routinely to identify carcinoma-associated fibroblasts (CAFs) such as alpha-smooth muscle actin (alpha-SMA), vimentin, S100A4 protein/fibroblast specific protein-1 (FSP1) and type I collagen. Likewise markers such as platelet derived growth factor receptor-beta (PDGFRbeta) and NG2 chondroitin sulfate proteoglycan (NG2) are used to identify mesenchymal cells such as pericytes and other vasculature associated smooth muscle cells. It is still unknown whether these markers overlap with each other or identify a unique population of cells within the tumor microenvironment. Therefore in the present study we utilized two different mouse models of cancer, the Rip1Tag2 mice that develop progressive pancreatic cancer and an orthotopic 4T1 breast cancer model, to study the overlap between six different mesenchymal markers commonly used in mouse cancer research. Our study demonstrates that among all the markers, S100A4/FSP1 identifies a unique population of fibroblasts with minimal overlap with markers for alphaSMA, PDGFRbeta and NG2. Vimentin and type I collagen are not specific markers for fibroblasts in these tumors. alphaSMA, PDGFRbeta and NG2 significantly overlap with each other in identifying a mixed population of fibroblasts (activated or resting), myofibroblasts, pericytes and vascular smooth muscle cells. Collectively, this study demonstrates that tumor microenvironment associated fibroblasts are a heterogeneous population and thus, the use of alphaSMA or vimentin as the only markers will not identify all the CAFs.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                06 April 2020
                April 2020
                : 21
                : 7
                : 2544
                Affiliations
                [1 ]Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; aforma@ 123456onet.pl (A.F.); amrmaanni@ 123456gmail.com (A.M.)
                [2 ]Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; brzozowskakaro@ 123456gmail.com
                [3 ]Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; elzbietaa.sitarz@ 123456gmail.com
                [4 ]Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; piero.portincasa@ 123456uniba.it
                Author notes
                [* ]Correspondence: jacek.baj@ 123456umlub.pl ; Tel.: +48-662-094-014
                Author information
                https://orcid.org/0000-0002-1372-8987
                https://orcid.org/0000-0001-6761-1947
                https://orcid.org/0000-0001-8714-7627
                https://orcid.org/0000-0001-7503-1838
                https://orcid.org/0000-0001-5359-1471
                Article
                ijms-21-02544
                10.3390/ijms21072544
                7177728
                32268527
                31dda2e9-28ba-4950-890e-ada42669d81e
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 March 2020
                : 02 April 2020
                Categories
                Review

                Molecular biology
                gastric cancer,epithelial-mesenchymal transition,immunology,immune cells,carcinogenesis,tumor microenvironment

                Comments

                Comment on this article