22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Peptidylarginine Deiminase Inhibitors Reduce Bacterial Membrane Vesicle Release and Sensitize Bacteria to Antibiotic Treatment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Outer membrane and membrane vesicles (OMV/MV) are released from bacteria and participate in cell communication, biofilm formation and host-pathogen interactions. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that catalyze post-translational deimination/citrullination of proteins, causing structural and functional changes in target proteins. PADs also play major roles in the regulation of eukaryotic extracellular vesicle release. Here we show phylogenetically conserved pathways of PAD-mediated OMV/MV release in bacteria and describe deiminated/citrullinated proteins in E. coli and their derived OMV/MVs. Furthermore, we show that PAD inhibitors can be used to effectively reduce OMV/MV release, both in Gram-negative and Gram-positive bacteria. Importantly, this resulted in enhanced antibiotic sensitivity of both E. coli and S. aureus to a range of antibiotics tested. Our findings reveal novel strategies for applying pharmacological OMV/MV-inhibition to reduce antibiotic resistance.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps

          Neutrophils trap and kill bacteria by forming highly decondensed chromatin structures, termed neutrophil extracellular traps (NETs). We previously reported that histone hypercitrullination catalyzed by peptidylarginine deiminase 4 (PAD4) correlates with chromatin decondensation during NET formation. However, the role of PAD4 in NET-mediated bacterial trapping and killing has not been tested. Here, we use PAD4 knockout mice to show that PAD4 is essential for NET-mediated antibacterial function. Unlike PAD4+/+ neutrophils, PAD4−/− neutrophils cannot form NETs after stimulation with chemokines or incubation with bacteria, and are deficient in bacterial killing by NETs. In a mouse infectious disease model of necrotizing fasciitis, PAD4−/− mice are more susceptible to bacterial infection than PAD4+/+ mice due to a lack of NET formation. Moreover, we found that citrullination decreased the bacterial killing activity of histones and nucleosomes, which suggests that PAD4 mainly plays a role in chromatin decondensation to form NETs instead of increasing histone-mediated bacterial killing. Our results define a role for histone hypercitrullination in innate immunity during bacterial infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections.

            The emergence of multidrug-resistant gram-negative bacteria and the lack of new antibiotics to combat them have led to the revival of polymyxins, an old class of cationic, cyclic polypeptide antibiotics. Polymyxin B and polymyxin E (colistin) are the 2 polymyxins used in clinical practice. Most of the reintroduction of polymyxins during the last few years is related to colistin. The polymyxins are active against selected gram-negative bacteria, including Acinetobacter species, Pseudomonas aeruginosa, Klebsiella species, and Enterobacter species. These drugs have been used extensively worldwide for decades for local use. However, parenteral use of these drugs was abandoned approximately 20 years ago in most countries, except for treatment of patients with cystic fibrosis, because of reports of common and serious nephrotoxicity and neurotoxicity. Recent studies of patients who received intravenous polymyxins for the treatment of serious P. aeruginosa and Acinetobacter baumannii infections of various types, including pneumonia, bacteremia, and urinary tract infections, have led to the conclusion that these antibiotics have acceptable effectiveness and considerably less toxicity than was reported in old studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles.

              Although archaea, Gram-negative bacteria, and mammalian cells constitutively secrete membrane vesicles (MVs) as a mechanism for cell-free intercellular communication, this cellular process has been overlooked in Gram-positive bacteria. Here, we found for the first time that Gram-positive bacteria naturally produce MVs into the extracellular milieu. Further characterizations showed that the density and size of Staphylococcus aureus-derived MVs are both similar to those of Gram-negative bacteria. With a proteomics approach, we identified with high confidence a total of 90 protein components of S. aureus-derived MVs. In the group of identified proteins, the highly enriched extracellular proteins suggested that a specific sorting mechanism for vesicular proteins exists. We also identified proteins that facilitate the transfer of proteins to other bacteria, as well to eliminate competing organisms, antibiotic resistance, pathological functions in systemic infections, and MV biogenesis. Taken together, these observations suggest that the secretion of MVs is an evolutionally conserved, universal process that occurs from simple organisms to complex multicellular organisms. This information will help us not only to elucidate the biogenesis and functions of MVs, but also to develop therapeutic tools for vaccines, diagnosis, and antibiotics effective against pathogenic strains of Gram-positive bacteria.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                27 June 2019
                2019
                : 9
                : 227
                Affiliations
                [1] 1Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University , London, United Kingdom
                [2] 2School of Biological and Chemical Sciences, Queen Mary University of London , London, United Kingdom
                [3] 3School of Life, Health and Chemical Sciences, The Open University , London, United Kingdom
                [4] 4Bioscience Research Group, Extracellular Vesicle Research Unit, School of Life and Medical Sciences, University of Hertfordshire , Hatfield, United Kingdom
                [5] 5Department of Neurology, University of Alabama at Birmingham , Birmingham, AL, United States
                [6] 6Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster , London, United Kingdom
                Author notes

                Edited by: Tracy Raivio, University of Alberta, Canada

                Reviewed by: Vincent Tam, Temple University, United States; Andrés González, Aragon Institute for Health Research (IIS Aragon), Spain

                *Correspondence: Sigrun Lange S.Lange@ 123456westminster.ac.uk

                This article was submitted to Molecular Bacterial Pathogenesis, a section of the journal Frontiers in Cellular and Infection Microbiology

                Article
                10.3389/fcimb.2019.00227
                6610471
                31316918
                31e81a09-5b8c-4d79-b892-47767cc24e5e
                Copyright © 2019 Kosgodage, Matewele, Mastroianni, Kraev, Brotherton, Awamaria, Nicholas, Lange and Inal.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 April 2019
                : 11 June 2019
                Page count
                Figures: 8, Tables: 3, Equations: 0, References: 93, Pages: 18, Words: 12677
                Categories
                Cellular and Infection Microbiology
                Original Research

                Infectious disease & Microbiology
                outer-membrane vesicles (omvs),peptidylarginine deiminase (pad),deimination/citrullination,antibiotic sensitivity,e. coli vcs257,s. aureus subsp. aureus rosenbach

                Comments

                Comment on this article