21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Metastasis by microRNAs in Ovarian Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ovarian cancer (OC) is the second most common and the most fatal gynecologic cancer in the United States. Over the last decade, various targeted therapeutics have been introduced but there has been no corresponding improvement in patient survival mainly because of the lack of effective early detection methods. microRNAs (miRs) are small, non-coding RNAs that regulate gene expression post-transcriptionally. Accumulating data suggest central regulatory roles of miRs in modulating OC initiation, progression, and metastasis. More recently, aberrant miR expression has been also associated with cancer stem cell (CSC) phenotypes and development of CSC chemo-resistance. Here, we review recent advances on miRs and OC metastasis and discuss the concept that miRs are involved in both CSC transformation and subsequent OC metastasis. Finally, we describe the prevalence of circulating miRs and assess their potential utilities as biomarkers for OC diagnosis, prognosis, and therapeutics.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Exosomal microRNA: a diagnostic marker for lung cancer.

          To date, there is no screening test for lung cancer shown to affect overall mortality. MicroRNAs (miRNAs) are a class of small noncoding RNA genes found to be abnormally expressed in several types of cancer, suggesting a role in the pathogenesis of human cancer. We evaluated the circulating levels of tumor exosomes, exosomal small RNA, and specific exosomal miRNAs in patients with and without lung adenocarcinoma, correlating the levels with the American Joint Committee on Cancer (AJCC) disease stage to validate it as an acceptable marker for diagnosis and prognosis in patients with adenocarcinoma of the lung. To date, 27 patients with lung adenocarcinoma AJCC stages I-IV and 9 controls, all aged 21-80 years, were enrolled in the study. Small RNA was detected in the circulating exosomes. The mean exosome concentration was 2.85 mg/mL (95% CI, 1.94-3.76) for the lung adenocarcinoma group versus 0.77 mg/mL (95% CI, 0.68-0.86) for the control group (P < .001). The mean miRNA concentration was 158.6 ng/mL (95% CI, 145.7-171.5) for the lung adenocarcinoma group versus 68.1 ng/mL (95% CI, 57.2-78.9) for the control group (P < .001). Comparisons between peripheral circulation miRNA-derived exosomes and miRNA-derived tumors indicated that the miRNA signatures were not significantly different. The significant difference in total exosome and miRNA levels between lung cancer patients and controls, and the similarity between the circulating exosomal miRNA and the tumor-derived miRNA patterns, suggest that circulating exosomal miRNA might be useful as a screening test for lung adenocarcinoma. No correlation between the exosomal miRNA levels and the stage of disease can be made at this point.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer.

            Recent findings that human serum contains stably expressed microRNA (miRNA) have revealed a great potential of serum miRNA signature as disease fingerprints to predict survival. We used genome-wide serum miRNA expression analysis to investigate the role of serum miRNA in predicting prognosis of non-small-cell lung cancer (NSCLC). To control disease heterogeneity, we used patients with stages I to IIIa lung adenocarcinoma and squamous cell carcinoma, who were treated with both operation and adjuvant chemotherapies. In the discovery stage, Solexa sequencing followed by individual quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays was used to test the difference in levels of serum miRNAs between 30 patients with longer survival (alive and mean survival time, 49.54 months) and 30 patients with shorter survival matched by age, sex, and stage (dead and mean survival time, 9.54 months). The detected serum miRNAs then were validated in 243 patients (randomly classified into two subgroups: n = 120 for the training set, and n = 123 for the testing set). Eleven serum miRNAs were found to be altered more than five-fold by Solexa sequencing between longer-survival and shorter-survival groups, and levels of four miRNAs (ie, miR-486, miR-30d, miR-1 and miR-499) were significantly associated with overall survival. The four-miRNA signature also was consistently an independent predictor of overall survival for both training and testing samples. The four-miRNA signature from the serum may serve as a noninvasive predictor for the overall survival of NSCLC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer.

              The cellular mechanisms underlying the increasing aggressiveness associated with ovarian cancer progression are poorly understood. Coupled with a lack of identification of specific markers that could aid early diagnoses, the disease becomes a major cause of cancer-related mortality in women. Here we present direct evidence that the aggressiveness of human ovarian cancer may be a result of transformation and dysfunction of stem cells in the ovary. A single tumorigenic clone was isolated among a mixed population of cells derived from the ascites of a patient with advanced ovarian cancer. During the course of the study, yet another clone underwent spontaneous transformation in culture, providing a model of disease progression. Both the transformed clones possess stem cell-like characteristics and differentiate to grow in an anchorage-independent manner in vitro as spheroids, although further maturation and tissue-specific differentiation was arrested. Significantly, tumors established from these clones in animal models are similar to those in the human disease in their histopathology and cell architecture. Furthermore, the tumorigenic clones, even on serial transplantation continue to establish tumors, thereby confirming their identity as tumor stem cells. These findings suggest that: (a) stem cell transformation can be the underlying cause of ovarian cancer and (b) continuing stochastic events of stem and progenitor cell transformation define the increasing aggression that is characteristically associated with the disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                19 May 2014
                10 June 2014
                2014
                : 4
                : 143
                Affiliations
                [1] 1Vascular Biology Center, Medical College of Georgia, Georgia Regents University , Augusta, GA, USA
                [2] 2Cancer Center, Medical College of Georgia, Georgia Regents University , Augusta, GA, USA
                [3] 3Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University , Augusta, GA, USA
                Author notes

                Edited by: Shailender S. Kanwar, University of Michigan, USA

                Reviewed by: Santos Mañes, Consejo Superior de Investigaciones Científicas, Spain; Vinesh Kumar Thidil Puliyappadamba, University of Alabama, USA

                *Correspondence: Il-man Kim, Department of Biochemistry and Molecular Biology, Vascular Biology Center, Medical College of Georgia, Georgia Regents University, CB-3717, 1459 Laney Walker Blvd, Augusta, GA 30912, USA e-mail: ilkim@ 123456gru.edu

                This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Oncology.

                Article
                10.3389/fonc.2014.00143
                4050529
                31e965aa-27f1-4930-acf4-1202ad36bb9f
                Copyright © 2014 Wang, Kim and Kim.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 April 2014
                : 27 May 2014
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 46, Pages: 6, Words: 4663
                Categories
                Oncology
                Mini Review

                Oncology & Radiotherapy
                ovarian cancer,mirs,cancer stem cells,epithelial–mesenchymal transition,extracellular matrix,angiogenesis

                Comments

                Comment on this article