Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes of Spontaneous Oscillatory Activity to Tonic Heat Pain

      1 , 2 , 3 , 1 , *

      PLoS ONE

      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG) data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A) resting condition; (B) innoxious-distracted condition; (C) noxious-distracted condition; (D) noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C) may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A) may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes.

          Related collections

          Most cited references 62

          • Record: found
          • Abstract: found
          • Article: not found

          EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.

          We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Event-related EEG/MEG synchronization and desynchronization: basic principles.

            An internally or externally paced event results not only in the generation of an event-related potential (ERP) but also in a change in the ongoing EEG/MEG in form of an event-related desynchronization (ERD) or event-related synchronization (ERS). The ERP on the one side and the ERD/ERS on the other side are different responses of neuronal structures in the brain. While the former is phase-locked, the latter is not phase-locked to the event. The most important difference between both phenomena is that the ERD/ERS is highly frequency band-specific, whereby either the same or different locations on the scalp can display ERD and ERS simultaneously. Quantification of ERD/ERS in time and space is demonstrated on data from a number of movement experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale.

              Pain intensity is frequently measured on an 11-point pain intensity numerical rating scale (PI-NRS), where 0=no pain and 10=worst possible pain. However, it is difficult to interpret the clinical importance of changes from baseline on this scale (such as a 1- or 2-point change). To date, there are no data driven estimates for clinically important differences in pain intensity scales used for chronic pain studies. We have estimated a clinically important difference on this scale by relating it to global assessments of change in multiple studies of chronic pain. Data on 2724 subjects from 10 recently completed placebo-controlled clinical trials of pregabalin in diabetic neuropathy, postherpetic neuralgia, chronic low back pain, fibromyalgia, and osteoarthritis were used. The studies had similar designs and measurement instruments, including the PI-NRS, collected in a daily diary, and the standard seven-point patient global impression of change (PGIC), collected at the endpoint. The changes in the PI-NRS from baseline to the endpoint were compared to the PGIC for each subject. Categories of "much improved" and "very much improved" were used as determinants of a clinically important difference and the relationship to the PI-NRS was explored using graphs, box plots, and sensitivity/specificity analyses. A consistent relationship between the change in PI-NRS and the PGIC was demonstrated regardless of study, disease type, age, sex, study result, or treatment group. On average, a reduction of approximately two points or a reduction of approximately 30% in the PI-NRS represented a clinically important difference. The relationship between percent change and the PGIC was also consistent regardless of baseline pain, while higher baseline scores required larger raw changes to represent a clinically important difference. The application of these results to future studies may provide a standard definition of clinically important improvement in clinical trials of chronic pain therapies. Use of a standard outcome across chronic pain studies would greatly enhance the comparability, validity, and clinical applicability of these studies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                6 March 2014
                : 9
                : 3
                Affiliations
                [1 ]Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong
                [2 ]Key Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, China
                [3 ]Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong
                Institute of Psychology, Chinese Academy of Sciences, China
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: WP LH YH. Performed the experiments: WP LH. Analyzed the data: WP ZZ YH. Contributed reagents/materials/analysis tools: LH YH. Wrote the paper: WP LH ZZ YH.

                PONE-D-13-43692
                10.1371/journal.pone.0091052
                3946288
                24603703

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Counts
                Pages: 11
                Funding
                This research was supported by Seed Funding for Basic Research from The University of Hong Kong. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Neuroscience
                Cognitive Neuroscience
                Pain
                Neurophysiology
                Central Nervous System
                Neuropsychology
                Medicine
                Diagnostic Medicine
                Clinical Neurophysiology
                Electroencephalography
                Mental Health
                Psychology
                Behavior
                Attention (Behavior)
                Sensory Perception
                Neurology
                Cognitive Neurology
                Neuroimaging

                Uncategorized

                Comments

                Comment on this article