266
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Silver-Russell syndrome: genetic basis and molecular genetic testing

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Imprinted genes with a parent-of-origin specific expression are involved in various aspects of growth that are rooted in the prenatal period. Therefore it is predictable that many of the so far known congenital imprinting disorders (IDs) are clinically characterised by growth disturbances. A noteable imprinting disorder is Silver-Russell syndrome (SRS), a congenital disease characterised by intrauterine and postnatal growth retardation, relative macrocephaly, a typical triangular face, asymmetry and further less characteristic features. However, the clinical spectrum is broad and the clinical diagnosis often subjective. Genetic and epigenetic disturbances can meanwhile be detected in approximately 50% of patients with typical SRS features. Nearly one tenth of patients carry a maternal uniparental disomy of chromosome 7 (UPD(7)mat), more than 38% show a hypomethylation in the imprinting control region 1 in 11p15. More than 1% of patients show (sub)microscopic chromosomal aberrations. Interestingly, in ~7% of 11p15 hypomethylation carriers, demethylation of other imprinted loci can be detected. Clinically, these patients do not differ from those with isolated 11p15 hypomethylation whereas the UPD(7)mat patients generally show a milder phenotype. However, an unambiguous (epi)genotype-phenotype correlation can not be delineated.

          We therefore suggest a diagnostic algorithm focused on the 11p15 hypomethylation, UPD(7)mat and cryptic chromosomal imbalances for patients with typical SRS phenotype, but also with milder clinical signs only reminiscent for the disease.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The imprinted H19 noncoding RNA is a primary microRNA precursor.

          Although H19 was the first imprinted noncoding transcript to be identified, the function of this conserved RNA has remained unclear. Here, we identify a 23-nucleotide microRNA derived from H19 that is endogenously expressed in human keratinocytes and neonatal mice and overexpressed in cells transfected with human or mouse H19 expression plasmids. These data demonstrate that H19 can function as a primary microRNA precursor and suggest that H19 expression results in the post-transcriptional downregulation of specific mRNAs during vertebrate development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Placental-specific IGF-II is a major modulator of placental and fetal growth.

            Imprinted genes in mammals are expressed from only one of the parental chromosomes, and are crucial for placental development and fetal growth. The insulin-like growth factor II gene (Igf2) is paternally expressed in the fetus and placenta. Here we show that deletion from the Igf2 gene of a transcript (P0) specifically expressed in the labyrinthine trophoblast of the placenta leads to reduced growth of the placenta, followed several days later by fetal growth restriction. The fetal to placental weight ratio is thus increased in the absence of the P0 transcript. We show that passive permeability for nutrients of the mutant placenta is decreased, but that secondary active placental amino acid transport is initially upregulated, compensating for the decrease in passive permeability. Later the compensation fails and fetal growth restriction ensues. Our study provides experimental evidence for imprinted gene action in the placenta that directly controls the supply of maternal nutrients to the fetus, and supports the genetic conflict theory of imprinting. We propose that the Igf2 gene, and perhaps other imprinted genes, control both the placental supply of, and the genetic demand for, maternal nutrients to the mammalian fetus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting.

              Growth factors are thought to function as pivotal autocrine-paracrine regulatory signals during embryonic development. Insulin-like growth factor II (IGF-II), a mitogenic polypeptide for a variety of cell lines, could have such a role, as indicated by the pattern of expression of its gene during rodent development. The IGF-II gene uses at least three promoters and expresses several transcripts in many tissues during the embryonic and neonatal periods, whereas expression in adult animals is confined to the choroid plexus and the leptomeninges. To examine the developmental role of IGF-II, we have begun to study the consequences of introducing mutations at the IGF-II gene locus in the mouse germ line. We have disrupted one of the IGF-II alleles in cultured mouse embryonic stem (ES) cells by gene targeting and constructed chimaeric animals. Germ-line transmission of the inactivated IGF-II gene from male chimaeras yielded heterozygous progeny that were smaller than their ES cell-derived wild-type littermates (about 60% of normal body weight). These growth-deficient animals were otherwise apparently normal and fertile. The effect of the mutation was exerted during the embryonic period. These results provide the first direct evidence for a physiological role of IGF-II in embryonic growth.
                Bookmark

                Author and article information

                Journal
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central
                1750-1172
                2010
                23 June 2010
                : 5
                : 19
                Affiliations
                [1 ]RWTH Aachen, Institute of Human Genetics, Aachen, Germany
                [2 ]University of Tübingen, Children's Hospital, Tübingen, Germany
                Article
                1750-1172-5-19
                10.1186/1750-1172-5-19
                2907323
                20573229
                32261d38-f594-42ce-915a-aa23c14acb4c
                Copyright ©2010 Eggermann et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 November 2009
                : 23 June 2010
                Categories
                Review

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article