22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acid-sensing ion channel (ASIC) 4 predominantly localizes to an early endosome-related organelle upon heterologous expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acid-sensing ion channels (ASICs) are voltage-independent proton-gated amiloride sensitive sodium channels, belonging to the DEG/ENaC gene family. Six different ASICs have been identified (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, ASIC4) that are activated by a drop in extracellular pH, either as homo- or heteromers. An exception is ASIC4, which is not activated by protons as a homomer and which does not contribute to functional heteromeric ASICs. Insensitivity of ASIC4 to protons and its comparatively low sequence identity to other ASICs (45%) raises the question whether ASIC4 may have different functions than other ASICs. In this study, we therefore investigated the subcellular localization of ASIC4 in heterologous cell lines, which revealed a surprising accumulation of the channel in early endosome-related vacuoles. Moreover, we identified an unique amino-terminal motif as important for forward-trafficking from the ER/Golgi to the early endosome-related compartment. Collectively, our results show that heterologously expressed ASIC4 predominantly resides in an intracellular endosomal compartment.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Visualization of retroviral replication in living cells reveals budding into multivesicular bodies.

          Retroviral assembly and budding is driven by the Gag polyprotein and requires the host-derived vacuolar protein sorting (vps) machinery. With the exception of human immunodeficiency virus (HIV)-infected macrophages, current models predict that the vps machinery is recruited by Gag to viral budding sites at the cell surface. However, here we demonstrate that HIV Gag and murine leukemia virus (MLV) Gag also drive assembly intracellularly in cell types including 293 and HeLa cells, previously believed to exclusively support budding from the plasma membrane. Using live confocal microscopy in conjunction with electron microscopy of cells generating fluorescently labeled virions or virus-like particles, we observed that these retroviruses utilize late endosomal membranes/multivesicular bodies as assembly sites, implying an endosome-based pathway for viral egress. These data suggest that retroviruses can interact with the vps sorting machinery in a more traditional sense, directly linked to the mechanism by which cellular proteins are sorted into multivesicular endosomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells.

            MDEG1 is a cation channel expressed in brain that belongs to the degenerin/epithelial Na+ channel superfamily. It is activated by the same mutations which cause neurodegeneration in Caenorhabditis elegans if present in the degenerins DEG-1, MEC-4, and MEC-10. MDEG1 shares 67% sequence identity with the recently cloned proton-gated cation channel ASIC (acid sensing ion channel), a new member of the family which is present in brain and in sensory neurons. We have now identified MDEG1 as a proton-gated channel with properties different from those of ASIC. MDEG1 requires more acidic pH values for activation and has slower inactivation kinetics. In addition, we have cloned from mouse and rat brain a splice variant form of the MDEG1 channel which differs in the first 236 amino acids, including the first transmembrane region. This new membrane protein, which has been called MDEG2, is expressed in both brain and sensory neurons. MDEG2 is activated neither by mutations that bring neurodegeneration once introduced in C. elegans degenerins nor by low pH. However, it can associate both with MDEG1 and another recently cloned H+-activated channel DRASIC to form heteropolymers which display different kinetics, pH dependences, and ion selectivities. Of particular interest is the subunit combination specific for sensory neurons, MDEG2/DRASIC. In response to a drop in pH, it gives rise to a biphasic current with a sustained current which discriminates poorly between Na+ and K+, like the native H+-gated current recorded in dorsal root ganglion cells. This sustained current is thought to be required for the tonic sensation of pain caused by acids.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mucolipins: Intracellular TRPML1-3 channels.

              The mucolipin family of Transient Receptor Potential (TRPML) proteins is predicted to encode ion channels expressed in intracellular endosomes and lysosomes. Loss-of-function mutations of human TRPML1 cause type IV mucolipidosis (ML4), a childhood neurodegenerative disease. Meanwhile, gain-of-function mutations in the mouse TRPML3 result in the varitint-waddler (Va) phenotype with hearing and pigmentation defects. The broad spectrum phenotypes of ML4 and Va appear to result from certain aspects of endosomal/lysosomal dysfunction. Lysosomes, traditionally believed to be the terminal "recycling center" for biological "garbage", are now known to play indispensable roles in intracellular signal transduction and membrane trafficking. Studies employing animal models and cell lines in which TRPML genes have been genetically disrupted or depleted have uncovered roles of TRPMLs in multiple cellular functions including membrane trafficking, signal transduction, and organellar ion homeostasis. Physiological assays of mammalian cell lines in which TRPMLs are heterologously overexpressed have revealed the channel properties of TRPMLs in mediating cation (Ca(2+)/Fe(2+)) efflux from endosomes and lysosomes in response to unidentified cellular cues. This review aims to summarize these recent advances in the TRPML field and to correlate the channel properties of endolysosomal TRPMLs with their biological functions. We will also discuss the potential cellular mechanisms by which TRPML deficiency leads to neurodegeneration. Copyright 2010 Federation of European Biochemical Societies. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                15 December 2015
                2015
                : 5
                : 18242
                Affiliations
                [1 ]Institute of Physiology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
                Author notes
                [*]

                Present address: University of Würzburg, Würzburg, Germany.

                Article
                srep18242
                10.1038/srep18242
                4678866
                26667795
                323068ec-53ee-4032-ad0a-8e420a6e7a96
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 17 February 2015
                : 23 October 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article