One of the defining features of sexual reproduction is the recombination events that take place during meiosis I. Recombination is both evolutionarily advantageous, but also mechanistically necessary to form the crossovers that link homologous chromosomes. Meiotic recombination is initiated through the placement of programmed double-strand DNA breaks (DSBs) mediated by the protein Spo11. The timing, number, and physical placement of DSBs are carefully controlled through a variety of protein machinery. Previous work has implicated Mer2(IHO1 in mammals) to be involved in both the placement of breaks, and their timing. In this study we use a combination of protein biochemistry and biophysics to extensively characterise various roles of the Mer2. We gain further insights into the details of Mer2 interaction with the PHD protein Spp1, reveal that Mer2 is a novel nucleosome binder, and suggest how Mer2’s interaction with the HORMA domain protein Hop1 (HORMAD1/2 in mammals) is controlled.