5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rethinking Heart Failure

      review-article
      Cardiology Research
      Elmer Press
      Heart failure, Catecholamine, Metabolism, Autonomous nervous system, Ouabain, Digoxin

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An increasing body of clinical observations and experimental evidence suggests that cardiac dysfunction results from autonomic dysregulation of the contractile output of the heart. Excessive activation of the sympathetic nervous system and a decrease in parasympathetic tone are associated with increased mortality. Elevated levels of circulating catecholamines closely correlate with the severity and poor prognosis in heart failure. Sympathetic over-stimulation causes increased levels of catecholamines, which induce excessive aerobic metabolism leading to excessive cardiac oxygen consumption. Resulting impaired mitochondrial function causes acidosis, which results in reduction in blood flow by impairment of contractility. To the extent that the excessive aerobic metabolism resulting from adrenergic stimulation comes to a halt the energy deficit has to be compensated for by anaerobic metabolism. Glucose and glycogen become the essential nutrients. Beta-adrenergic blockade is used successfully to decrease hyperadrenergic drive. Neurohumoral antagonists block adrenergic over-stimulation but do not provide the heart with fuel for compensatory anaerobic metabolism. The endogenous hormone ouabain reduces catecholamine levels in healthy volunteers, promotes the secretion of insulin, induces release of acetylcholine from synaptosomes and potentiates the stimulation of glucose metabolism by insulin and acetylcholine. Ouabain stimulates glycogen synthesis and increases lactate utilisation by the myocardium. Decades of clinical experience with ouabain confirm the cardioprotective effects of this endogenous hormone. The so far neglected sympatholytic and vagotonic effects of ouabain on myocardial metabolism clearly make a clinical re-evaluation of this endogenous hormone necessary. Clinical studies with ouabain that correspond to current standards are warranted.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of Psychological Factors on the Pathogenesis of Cardiovascular Disease and Implications for Therapy

          Recent studies provide clear and convincing evidence that psychosocial factors contribute significantly to the pathogenesis and expression of coronary artery disease (CAD). This evidence is composed largely of data relating CAD risk to 5 specific psychosocial domains: (1) depression, (2) anxiety, (3) personality factors and character traits, (4) social isolation, and (5) chronic life stress. Pathophysiological mechanisms underlying the relationship between these entities and CAD can be divided into behavioral mechanisms, whereby psychosocial conditions contribute to a higher frequency of adverse health behaviors, such as poor diet and smoking, and direct pathophysiological mechanisms, such as neuroendocrine and platelet activation. An extensive body of evidence from animal models (especially the cynomolgus monkey, Macaca fascicularis) reveals that chronic psychosocial stress can lead, probably via a mechanism involving excessive sympathetic nervous system activation, to exacerbation of coronary artery atherosclerosis as well as to transient endothelial dysfunction and even necrosis. Evidence from monkeys also indicates that psychosocial stress reliably induces ovarian dysfunction, hypercortisolemia, and excessive adrenergic activation in premenopausal females, leading to accelerated atherosclerosis. Also reviewed are data relating CAD to acute stress and individual differences in sympathetic nervous system responsivity. New technologies and research from animal models demonstrate that acute stress triggers myocardial ischemia, promotes arrhythmogenesis, stimulates platelet function, and increases blood viscosity through hemoconcentration. In the presence of underlying atherosclerosis (eg, in CAD patients), acute stress also causes coronary vasoconstriction. Recent data indicate that the foregoing effects result, at least in part, from the endothelial dysfunction and injury induced by acute stress. Hyperresponsivity of the sympathetic nervous system, manifested by exaggerated heart rate and blood pressure responses to psychological stimuli, is an intrinsic characteristic among some individuals. Current data link sympathetic nervous system hyperresponsivity to accelerated development of carotid atherosclerosis in human subjects and to exacerbated coronary and carotid atherosclerosis in monkeys. Thus far, intervention trials designed to reduce psychosocial stress have been limited in size and number. Specific suggestions to improve the assessment of behavioral interventions include more complete delineation of the physiological mechanisms by which such interventions might work; increased use of new, more convenient "alternative" end points for behavioral intervention trials; development of specifically targeted behavioral interventions (based on profiling of patient factors); and evaluation of previously developed models of predicting behavioral change. The importance of maximizing the efficacy of behavioral interventions is underscored by the recognition that psychosocial stresses tend to cluster together. When they do so, the resultant risk for cardiac events is often substantially elevated, equaling that associated with previously established risk factors for CAD, such as hypertension and hypercholesterolemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell-cell and intracellular lactate shuttles.

            Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. 'Cell-cell' and 'intracellular lactate shuttle' concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cell-cell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications.

              Heart failure is a syndrome characterized initially by left ventricular dysfunction that triggers countermeasures aimed to restore cardiac output. These responses are compensatory at first but eventually become part of the disease process itself leading to further worsening cardiac function. Among these responses is the activation of the sympathetic nervous system (SNS) that provides inotropic support to the failing heart increasing stroke volume, and peripheral vasoconstriction to maintain mean arterial perfusion pressure, but eventually accelerates disease progression affecting survival. Activation of SNS has been attributed to withdrawal of normal restraining influences and enhancement of excitatory inputs including changes in: 1) peripheral baroreceptor and chemoreceptor reflexes; 2) chemical mediators that control sympathetic outflow; and 3) central integratory sites. The interface between the sympathetic fibers and the cardiovascular system is formed by the adrenergic receptors (ARs). Dysregulation of cardiac beta(1)-AR signaling and transduction are key features of heart failure progression. In contrast, cardiac beta(2)-ARs and alpha(1)-ARs may function in a compensatory fashion to maintain cardiac inotropy. Adrenergic receptor polymorphisms may have an impact on the adaptive mechanisms, susceptibilities, and pharmacological responses of SNS. The beta-AR blockers and the inhibitors of the renin-angiotensin-aldosterone axis form the mainstay of current medical management of chronic heart failure. Conversely, central sympatholytics have proved harmful, whereas sympathomimetic inotropes are still used in selected patients with hemodynamic instability. This review summarizes the changes in SNS in heart failure and examines how modulation of SNS activity may affect morbidity and mortality from this syndrome.
                Bookmark

                Author and article information

                Journal
                Cardiol Res
                Cardiol Res
                Elmer Press
                Cardiology Research
                Elmer Press
                1923-2829
                1923-2837
                December 2012
                20 November 2012
                : 3
                : 6
                : 243-257
                Affiliations
                Dr. Hauke Fürstenwerth, Unterölbach 3A, D-51381 Leverkusen, Germany. Email: hauke@ 123456fuerstenwerth.com
                Article
                10.4021/cr228w
                5358298
                32395e37-da0a-475a-bc4d-cb5783e19bf7
                Copyright 2012, Fürstenwerth

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 December 2012
                Categories
                Review

                heart failure,catecholamine,metabolism,autonomous nervous system,ouabain,digoxin

                Comments

                Comment on this article