30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Age-Specific Determinants of Pulse Wave Velocity among Metabolic Syndrome Components, Inflammatory Markers, and Oxidative Stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim: Pulse wave velocity (PWV) is thought to have different relationships with metabolic syndrome (MS) components, inflammatory markers, and oxidative stress, according to age. However, age-specific determinants of PWV have not yet been studied. We investigated age-dependent relationships among PWV and MS components, inflammatory markers, and oxidative stress.

          Methods: A total of 4,318 subjects were divided into 4 groups: 19–34 y ( n = 687), 35–44 y ( n = 1,413), 45–54 y ( n = 1,384), and 55–79 y ( n = 834). MS components, brachial-ankle PWV (baPWV), high-sensitivity C-reactive protein (hs-CRP), and oxidative stress markers were measured.

          Results: There were age-related increases in MS, body mass index (BMI), waist circumference, systolic blood pressure (SBP), diastolic BP (DBP), triglycerides, glucose, hs-CRP, oxidized low-density lipoprotein (LDL), 8-epi-prostaglandin F 2 α (8-epi-PGF 2 α ), and baPWV. BaPWV was significantly associated with sex and elevated BP in the 19–34 y group; with age, sex, BMI, elevated BP and triglycerides in the 35–44 y group; with age, sex, elevated BP, fasting glucose, hs-CRP and oxidized LDL in the 45–54 y group; and with age, BMI, elevated BP, fasting glucose and oxidized LDL in the 55–79 y group.

          Conclusions: Our results show that age-related increases in baPWV are associated with age-related changes in MS components, inflammatory markers, and oxidative stress. However, each of these factors has an age-specific, different impact on arterial stiffness. In particular, oxidative stress may be independently associated with arterial stiffness in individuals older than 45 y.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanical factors in arterial aging: a clinical perspective.

          The human arterial system in youth is beautifully designed for its role of receiving spurts of blood from the left ventricle and distributing this as steady flow through peripheral capillaries. Central to such design is "tuning" of the heart to arterial tree; this minimizes aortic pressure fluctuations and confines flow pulsations to the larger arteries. With aging, repetitive pulsations (some 30 million/year) cause fatigue and fracture of elastin lamellae of central arteries, causing them to stiffen (and dilate), so that reflections return earlier to the heart; in consequence, aortic systolic pressure rises, diastolic pressure falls, and pulsations of flow extend further into smaller vessels of vasodilated organs (notably the brain and kidney). Stiffening leads to increased left ventricular (LV) load with hypertrophy, decreased capacity for myocardial perfusion, and increased stresses on small arterial vessels, particularly of brain and kidney. Clinical manifestations are a result of diastolic LV dysfunction with dyspnea, predisposition to angina, and heart failure, and small vessel degeneration in brain and kidney with intellectual deterioration and renal failure. While aortic stiffening is the principal cause of cardiovascular disease with age in persons who escape atherosclerotic complications, it is not a specific target for therapy. The principal target is the smooth muscle in distributing arteries, whose relaxation has little effect on peripheral resistance but causes substantial reduction in the magnitude of wave reflection. Such relaxation is achieved through regular exercise and with the vasodilating drugs that are used in modern treatment of hypertension and cardiac failure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase.

            Endothelial nitric-oxide synthase (eNOS) is an important regulatory enzyme in the cardiovascular system catalyzing the production of NO from arginine. Multiple protein kinases including Akt/PKB, cAMP-dependent protein kinase (PKA), and the AMP-activated protein kinase (AMPK) activate eNOS by phosphorylating Ser-1177 in response to various stimuli. During VEGF signaling in endothelial cells, there is a transient increase in Ser-1177 phosphorylation coupled with a decrease in Thr-495 phosphorylation that reverses over 10 min. PKC signaling in endothelial cells inhibits eNOS activity by phosphorylating Thr-495 and dephosphorylating Ser-1177 whereas PKA signaling acts in reverse by increasing phosphorylation of Ser-1177 and dephosphorylation of Thr-495 to activate eNOS. Both phosphatases PP1 and PP2A are associated with eNOS. PP1 is responsible for dephosphorylation of Thr-495 based on its specificity for this site in both eNOS and the corresponding synthetic phosphopeptide whereas PP2A is responsible for dephosphorylation of Ser-1177. Treatment of endothelial cells with calyculin selectively blocks PKA-mediated dephosphorylation of Thr-495 whereas okadaic acid selectively blocks PKC-mediated dephosphorylation of Ser-1177. These results show that regulation of eNOS activity involves coordinated signaling through Ser-1177 and Thr-495 by multiple protein kinases and phosphatases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular signaling and NO production.

              The endothelium can evoke relaxations (dilatations) of the underlying vascular smooth muscle, by releasing vasodilator substances. The best characterized endothelium-derived relaxing factor is nitric oxide (NO), which is synthesized by the endothelial isoform of nitric oxide synthase (eNOS). Endothelium-dependent relaxations involve both pertussis-toxin-sensitive G(i) (e.g., responses to serotonin, sphingosine 1-phosphate, alpha(2)-adrenergic agonists, and thrombin) and pertussis-toxin-insensitive G(q) (e.g., adenosine diphosphate and bradykinin) coupling proteins. eNOS undergoes a complex pattern of intracellular regulation, including post-translational modifications involving enzyme acylation and phosphorylation. eNOS is reversibly targeted to signal-transducing plasmalemmal caveolae where the enzyme interacts with a number of regulatory proteins, many of which are modified in cardiovascular disease states. The release of nitric oxide by the endothelial cell can be up- (e.g., by estrogens, exercise, and dietary factors) and down-regulated (e.g. oxidative stress, smoking, and oxidized low-density lipoproteins). It is reduced in the course of vascular disease (e.g., diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis-toxin-sensitive pathway for NO release which favors vasospasm, thrombosis, penetration of macrophages, cellular growth, and the inflammatory reaction leading to atherosclerosis. The unraveling of the complex interaction of the pathways regulating the presence and the activity of eNOS will enhance the understanding of the perturbations in endothelium-dependent signaling that are seen in cardiovascular disease states, and may lead to the identification of novel targets for therapeutic intervention.
                Bookmark

                Author and article information

                Journal
                J Atheroscler Thromb
                J. Atheroscler. Thromb
                jat
                jat
                Journal of Atherosclerosis and Thrombosis
                Japan Atherosclerosis Society
                1340-3478
                1880-3873
                1 February 2018
                : 25
                : 2
                : 178-185
                Affiliations
                [1 ]Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
                [2 ]National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
                [3 ]Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
                [4 ]Department of Family Practice, National Health Insurance Corporation, Ilsan Hospital, Goyang, Korea
                Author notes
                Address for correspondence: Jong Ho Lee, Department of Food & Nutrition, College of Human Ecology, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea E-mail: jhleeb@ 123456yonsei.ac.kr
                Article
                10.5551/jat.39388
                5827087
                28740031
                323c26ab-a274-4b3c-8b8b-402c51243ded
                2018 Japan Atherosclerosis Society

                This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License. http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 11 December 2016
                : 5 June 2017
                Page count
                Figures: 0, Tables: 4, References: 25, Pages: 8
                Categories
                Original Article

                arterial stiffness,bapwv,metabolic syndrome,oxidative stress

                Comments

                Comment on this article