12
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to the journal, click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Improved K-Power Means Technique Using Minkowski Distance Metric and Dimension Weights for Clustering Wireless Multipaths in Indoor Channel Scenarios

      1 , 1
      Journal of Information and Communication Technology
      UUM Press

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wireless multipath clustering is an important area in channel modeling, and an accurate channel model can lead to a reliable wireless environment. Finding the best technique in clustering wireless multipath is still challenging due to the radio channels’ time-variant characteristics. Several clustering techniques have been developed that offer an improved performance but only consider one or two parameters of the multipath components. This study improved the K-PowerMeans technique by incorporating weights or loads based on the principal component analysis and utilizing the Minkowski distance metric to replace the Euclidean distance. K-PowerMeans is one of the several methods in clustering wireless propagation multipaths and has been widely studied. This improved clustering technique was applied to the indoor datasets generated from the COST 2100 channel Model and considered the multipath components’ angular domains and their delay. The Jaccard index was used to determine the new method’s accuracy performance. The results showed a significant improvement in the clustering of the developed algorithm than the standard K-PowerMeans. 

          Related collections

          Author and article information

          Contributors
          Philippines
          Philippines
          Journal
          Journal of Information and Communication Technology
          UUM Press
          September 27 2021
          : 20
          : 541-563
          Affiliations
          [1 ]Department of Electronics and Communications Engineering, De La Salle University, Philippines
          Article
          11735
          10.32890/jict2021.20.4.4
          324554f3-2c57-4e56-b6de-46445a8997ae

          All content is freely available without charge to users or their institutions. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission of the publisher or the author. Articles published in the journal are distributed under a http://creativecommons.org/licenses/by/4.0/.

          History

          Communication networks,Applied computer science,Computer science,Information systems & theory,Networking & Internet architecture,Artificial intelligence

          Comments

          Comment on this article