13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recombinant human erythropoietin alters gene expression and stimulates proliferation of MCF-7 breast cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Functional erythropoietin (EPO) signaling is not specific only to erythroid lineages and has been confirmed in several solid tumors, including breast. Three different isoforms of erythropoietin receptor (EPOR) have been reported, the soluble (EPOR-S) and truncated (EPOR-T) forms acting antagonistically to the functional EPOR. In this study, we investigated the effect of human recombinant erythropoietin (rHuEPO) on cell proliferation, early gene response and the expression of EPOR isoforms in the MCF-7 breast cancer cell line.

          Materials and methods

          The MCF-7 cells were cultured with or without rHuEPO for 72 h or 10 weeks and assessed for their growth characteristics, expression of early response genes and different EPOR isoforms. The expression profile of EPOR and EPOR-T was determined in a range of breast cancer cell lines and compared with their invasive properties.

          Results

          MCF-7 cell proliferation after rHuEPO treatment was dependent on the time of treatment and the concentration used. High rHuEPO concentrations (40 U/ml) stimulated cell proliferation independently of a preceding long-term exposure of MCF-7 cells to rHuEPO, while lower concentrations increased MCF-7 proliferation only after 10 weeks of treatment. Gene expression analysis showed activation of EGR1 and FOS, confirming the functionality of EPOR. rHuEPO treatment also slightly increased the expression of the functional EPOR isoform, which, however, persisted throughout the 10 weeks of treatment. The expression levels of EPOR-T were not influenced. There were no correlations between EPOR expression and the invasiveness of MCF-7, MDA-MB-231, Hs578T, Hs578Bst, SKBR3, T-47D and MCF-10A cell lines.

          Conclusions

          rHuEPO modulates MCF-7 cell proliferation in time- and concentration-dependent manner. We confirmed EGR1, FOS and EPOR as transcription targets of the EPO-EPOR signaling loop, but could not correlate the expression of different EPOR isoforms with the invasiveness of breast cancer cell lines.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          R: A Language and Environment for Statistical Computing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells.

            The growth of both normal and transformed epithelial cells of the female reproductive system is stimulated by estrogens, mainly through the activation of estrogen receptor alpha (ERalpha), which is a ligand-regulated transcription factor. The selective ER modulator tamoxifen (TAM) has been widely used as an ER antagonist in breast tumor; however, long-term treatment is associated with an increased risk of endometrial cancer. To provide new insights into the potential mechanisms involved in the agonistic activity exerted by TAM in the uterus, we evaluated the potential of 4-hydroxytamoxifen (OHT), the active metabolite of TAM, to transactivate wild-type ERalpha and its splice variant expressed in Ishikawa and HEC1A endometrial tumor cells, respectively. OHT was able to antagonize only the activation of ERalpha by 17beta-estradiol (E2) in Ishikawa cells, whereas it up-regulated c-fos expression in a rapid manner similar to E2 and independently of ERalpha in both cell lines. This stimulation occurred through the G protein-coupled receptor named GPR30 and required Src-related and epidermal growth factor receptor tyrosine kinase activities, along with the activation of both ERK1/2 and phosphatidylinositol 3-kinase/AKT pathways. Most importantly, OHT, like E2, stimulated the proliferation of Ishikawa as well as HEC1A cells. Transfecting a GPR30 antisense expression vector in both endometrial cancer cell lines, OHT was no longer able to induce growth effects, whereas the proliferative response to E2 was completely abrogated only in HEC1A cells. Furthermore, in the presence of the inhibitors of MAPK and phosphatidylinositol 3-kinase pathways, PD 98059 and wortmannin, respectively, E2 and OHT did not elicit growth stimulation. Our data demonstrate a new mode of action of E2 and OHT in endometrial cancer cells, contributing to a better understanding of the molecular mechanisms involved in their uterine agonistic activity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Bioinformatics and Computational Biology Solutions Using R and Bioconductor

                Bookmark

                Author and article information

                Journal
                Radiol Oncol
                Radiol Oncol
                RADO
                Radiology and Oncology
                Versita, Warsaw
                1318-2099
                1581-3207
                December 2013
                08 October 2013
                : 47
                : 4
                : 382-389
                Affiliations
                [1 ]Center for Functional Genomics and Bio-chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
                [2 ]Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
                [3 ]Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
                Author notes
                Correspondence to: Assist. Prof. Dr. Nataša Debeljak, Institute of Biochemistry, Faculty of Medicine University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia. E-mail: natasa.debeljak@ 123456mf.uni-lj.si

                Disclosure: No potential conflicts of interest were disclosed.

                Article
                rado-47-04-382
                10.2478/raon-2013-0056
                3814284
                3246c041-b639-4385-8dda-dbce64c0baa4
                Copyright © by Association of Radiology & Oncology

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 18 June 2013
                : 16 August 2013
                Categories
                Research Article

                Oncology & Radiotherapy
                breast cancer,erythropoietin,erythropoietin receptor isoforms,proliferation,gene expression

                Comments

                Comment on this article