16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of the Progesterone Nuclear Receptor during the Bone Linear Growth Phase Increases Peak Bone Mass in Female Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Augmentation of the peak bone mass (PBM) may be one of the most effective interventions to reduce the risk of developing osteoporosis later in life; however treatments to augment PBM are currently limited. Our study evaluated whether a greater PBM could be achieved either in the progesterone nuclear receptor knockout mice (PRKO) or by using a nuclear progesterone receptor (nPR) antagonist, RU486 in mice. Compared to their wild type (WT) littermates the female PRKO mice developed significantly higher cancellous and cortical mass in the distal femurs, and this was associated with increased bone formation. The high bone mass phenotype was partially reproduced by administering RU486 in female WT mice from 1–3 months of age. Our results suggest that the inhibition of the nPR during the rapid bone growth period (1–3 months) increases osteogenesis, which results in acquisition of higher bone mass. Our findings suggest a crucial role for progesterone signaling in bone acquisition and inhibition of the nPR as a novel approach to augment bone mass, which may have the potential to reduce the burden of osteoporosis.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities.

          Although progesterone has been recognized as essential for the establishment and maintenance of pregnancy, this steroid hormone has been recently implicated to have a functional role in a number of other reproductive events. The physiological effects of progesterone are mediated by the progesterone receptor (PR), a member of the nuclear receptor superfamily of transcription factors. In most cases the PR is induced by estrogen, implying that many of the in vivo effects attributed to progesterone could also be the result of concomitantly administered estrogen. Therefore, to clearly define those physiological events that are specifically attributable to progesterone in vivo, we have generated a mouse model carrying a null mutation of the PR gene using embryonic stem cell/gene targeting techniques. Male and female embryos homozygous for the PR mutation developed normally to adulthood. However, the adult female PR mutant displayed significant defects in all reproductive tissues. These included an inability to ovulate, uterine hyperplasia and inflammation, severely limited mammary gland development, and an inability to exhibit sexual behavior. Collectively, these results provide direct support for progesterone's role as a pleiotropic coordinator of diverse reproductive events that together ensure species survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK.

            Forkhead transcription factors of the FOXO class are negatively regulated by PKB/c-Akt in response to insulin/IGF signalling, and are involved in regulating cell cycle progression and cell death. Here we show that, in contrast to insulin signalling, low levels of oxidative stress generated by treatment with H2O2 induce the activation of FOXO4. Upon treatment of cells with H2O2, the small GTPase Ral is activated and this results in a JNK-dependent phosphorylation of FOXO4 on threonine 447 and threonine 451. This Ral-mediated, JNK-dependent phosphorylation is involved in the nuclear translocation and transcriptional activation of FOXO4 after H2O2 treatment. In addition, we show that this signalling pathway is also employed by tumor necrosis factor alpha to activate FOXO4 transcriptional activity. FOXO members have been implicated in cellular protection against oxidative stress via the transcriptional regulation of manganese superoxide dismutase and catalase gene expression. The results reported here, therefore, outline a homeostasis mechanism for sustaining cellular reactive oxygen species that is controlled by signalling pathways that can convey both negative (PI-3K/PKB) and positive (Ras/Ral) inputs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The hunting of the Src.

              G Martin (2001)
              The non-receptor tyrosine kinase Src is important for many aspects of cell physiology. The viral src gene was the first retroviral oncogene to be identified, and its cellular counterpart was the first proto-oncogene to be discovered in the vertebrate genome. Src has been important, not only as an object of study in itself, but also as an entry point into the molecular genetics of cancer.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                1 July 2010
                : 5
                : 7
                : e11410
                Affiliations
                [1]Department of Internal Medicine, Center for Healthy Aging, University of California Davis Medical Center, Sacramento, California, United States of America
                University of Las Palmas de Gran Canaria, Spain
                Author notes

                Conceived and designed the experiments: WY NEL. Performed the experiments: WY WD MS AP ZC HC MG NEL. Analyzed the data: WY WD MS HC NEL. Contributed reagents/materials/analysis tools: WY NEL. Wrote the paper: WY NEL.

                Article
                10-PONE-RA-16092R2
                10.1371/journal.pone.0011410
                2895664
                20625385
                3250a9af-61cd-4fad-802f-b0d084b6e41c
                Yao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 January 2010
                : 5 June 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Cell Biology/Gene Expression
                Cell Biology/Nuclear Structure and Function
                Genetics and Genomics/Animal Genetics
                Genetics and Genomics/Disease Models

                Uncategorized
                Uncategorized

                Comments

                Comment on this article