23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adenyl cyclases and cAMP in plant signaling - past and present

      review-article
      1 ,
      Cell Communication and Signaling : CCS
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In lower eukaryotes and animals 3'-5'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Structural parts involved in activation and inactivation of the sodium channel.

          Structure-function relationships of the sodium channel expressed in Xenopus oocytes have been investigated by the combined use of site-directed mutagenesis and patch-clamp recording. This study provides evidence that the positive charges in segment S4 are involved in the voltage-sensing mechanism for activation of the channel and that the region between repeats III and IV is important for its inactivation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity.

            Plant innate immune response to pathogen infection includes an elegant signaling pathway leading to reactive oxygen species generation and resulting hypersensitive response (HR); localized programmed cell death in tissue surrounding the initial infection site limits pathogen spread. A veritable symphony of cytosolic signaling molecules (including Ca(2+), nitric oxide [NO], cyclic nucleotides, and calmodulin) have been suggested as early components of HR signaling. However, specific interactions among these cytosolic secondary messengers and their roles in the signal cascade are still unclear. Here, we report some aspects of how plants translate perception of a pathogen into a signal cascade leading to an innate immune response. We show that Arabidopsis thaliana CYCLIC NUCLEOTIDE GATED CHANNEL2 (CNGC2/DND1) conducts Ca(2+) into cells and provide a model linking this Ca(2+) current to downstream NO production. NO is a critical signaling molecule invoking plant innate immune response to pathogens. Plants without functional CNGC2 lack this cell membrane Ca(2+) current and do not display HR; providing the mutant with NO complements this phenotype. The bacterial pathogen-associated molecular pattern elicitor lipopolysaccharide activates a CNGC Ca(2+) current, which may be linked to NO generation due to buildup of cytosolic Ca(2+)/calmodulin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae.

              We report the isolation of a cDNA (KAT1) from Arabidopsis thaliana that encodes a probable K+ channel. KAT1 was cloned by its ability to suppress a K+ transport-defective phenotype in mutant Saccharomyces cerevisiae cells. This suppression is sensitive to known K+ channel blockers, including tetraethylammonium and Ba2+ ions. The KAT1 cDNA contains an open reading frame capable of encoding a 78-kDa protein that shares structural features found in the Shaker superfamily of K+ channels. These include a cluster of six putative membrane-spanning helices (S1-S6) at the amino terminus of the protein, a presumed voltage-sensing region containing Arg/Lys-Xaa-Xaa-Arg/Lys repeats within S4, and the highly conserved pore-forming region (known as H5 or SS1-SS2). Our results suggest that the structural motif for K+ channels has been conserved between plants and animals.
                Bookmark

                Author and article information

                Journal
                Cell Commun Signal
                Cell Communication and Signaling : CCS
                BioMed Central
                1478-811X
                2010
                25 June 2010
                : 8
                : 15
                Affiliations
                [1 ]Division of Chemistry, Life Science & Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
                Article
                1478-811X-8-15
                10.1186/1478-811X-8-15
                2907374
                20579354
                32511819-da1f-417e-bd41-3ba7e10566a6
                Copyright ©2010 Gehring; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 May 2010
                : 25 June 2010
                Categories
                Review

                Cell biology
                Cell biology

                Comments

                Comment on this article